[Pagina precedente]... alcune risposte fattesi scambievolmente, verrà loro talmente aggiustata, che, senza sensibile svario, alla scoperta dell'uno risponderà immediatamente la scoperta dell'altro, sì che quando l'uno scuopre il suo lume, vedrà nell'istesso tempo comparire alla sua vista il lume dell'altro. Aggiustata cotal pratica in questa piccolissima distanza, pongansi i due medesimi compagni con due simili lumi in lontananza di due o tre miglia, e tornando di notte a far l'istessa esperienza, vadano osservando attentamente se le risposte delle loro scoperte ed occultazioni seguono secondo l'istesso tenore che facevano da vicino; che seguendo, si potrà assai sicuramente concludere, l'espansion del lume essere instantanea: ché quando ella ricercasse tempo, in una lontananza di tre miglia, che importano sei per l'andata d'un lume e venuta dell'altro, la dimora dovrebbe esser assai osservabile. E quando si volesse far tal osservazione in distanze maggiori, cioè di otto o dieci miglia, potremmo servirci del telescopio, aggiustandone un per uno gli osservatori al luogo dove la notte si hanno a mettere in pratica i lumi; li quali, ancor che non molto grandi, e per ciò invisibili in tanta lontananza all'occhio libero, ma ben facili a coprirsi e scoprirsi, con l'aiuto de i telescopii già aggiustati e fermati potranno esser commodamente veduti.
SAGR. L'esperienza mi pare d'invenzione non men sicura che ingegnosa. Ma diteci quello che nel praticarla avete concluso.
SALV. Veramente non l'ho sperimentata, salvo che in lontananza piccola, cioè manco d'un miglio, dal che non ho potuto assicurarmi se veramente la comparsa del lume opposto sia instantanea; ma ben, se non instantanea, velocissima, e direi momentanea, è ella, e per ora l'assimiglierei a quel moto che veggiamo farsi dallo splendore del baleno veduto tra le nugole lontane otto o dieci miglia; del qual lume distinguiamo il principio, e dirò il capo e fonte, in un luogo particolare tra esse nugole, ma bene immediatamente segue la sua espansione amplissima per le altre circostanti; che mi pare argomento, quella farsi con qualche poco di tempo; perché quando l'illuminazione fusse fatta tutta insieme, e non per parti, non par che si potesse distinguer la sua origine, e dirò il suo centro, dalle sue falde e dilatazioni estreme. Ma in quai pelaghi ci andiamo noi inavvertentemente pian piano ingolfando? tra i vacui, tra gl'infiniti, tra gli indivisibili, tra i movimenti instantanei, per non poter mai, dopo mille discorsi, giugnere a riva?
SAGR. Cose veramente molto sproporzionate al nostro intendimento. Ecco: l'infinito, cercato tra i numeri, par che vadia a terminar nell'unità ; da gl'indivisibili nasce il sempre divisibile; il vacuo non par che risegga se non indivisibilmente mescolato tra 'l pieno: ed in somma in queste cose si muta talmente la natura delle comunemente intese da noi, che sin alla circonferenza d'un cerchio doventa una linea retta infinita; che, s'io ho ben tenuto a memoria, è quella proposizione che voi, Sig. Salviati, dovevi con geometrica dimostrazione far manifesta. Però, quando vi piaccia, sarà bene, senza più digredire, arrecarcela.
SALV. Eccomi a servirle, dimostrando per piena intelligenza il seguente problema:
Data una linea retta divisa secondo qualsivoglia proporzione in parti diseguali, descrivere un cerchio, alla cui circonferenza prodotte, a qualsivoglia punto di essa, due linee rette da i termini della data linea, ritenghino la proporzion medesima che hanno tra di loro le parti di essa linea data, sì che omologhe siano quelle che si partono da i medesimi termini.
[v. figura 8]
Sia la data retta linea AB, divisa in qualsivoglia modo in parti diseguali nel punto C: bisogna descrivere il cerchio, a qualsivoglia punto della cui circonferenza concorrendo due rette prodotte da i termini A, B, abbiano tra di loro la proporzion medesima che hanno tra di loro le parti AC, BC, sì che omologhe sian quelle che si partono dall'istesso termine. Sopra 'l centro C, con l'intervallo della minor parte CB, intendasi descritto un cerchio, alla circonferenza del quale venga tangente dal punto A la retta AD, indeterminatamente prolungata verso E, e sia il contatto in D, e congiungasi la CD, che sarà perpendicolare alla AE; ed alla BA sia perpendicolare la BE, la quale prodotta concorrerà con la AE, essendo l'angolo A acuto; sia il concorso in E, di dove si ecciti la perpendicolare alla AE, che prodotta vadia a concorrere con la AB, infinitamente prolungata, in F: dico primieramente, le due rette FE, FC esser eguali. Imperò che, tirata la EC, aremo ne i due triangoli DEC, BEC li due lati dell'uno DE, EC eguali alli due dell'altro BE, EC, essendo le due DE, EB tangenti del cerchio DB, e le basi DC, CB parimente eguali; onde li due angoli DEC, BEC saranno eguali. E perché all'angolo BCE per esser retto manca quanto è l'angolo CEB, ed all'angolo CEF, pur per esser retto, manca quanto è l'angolo CED, essendo tali mancamenti eguali, gli angoli FCE, FEC saranno eguali, ed in consequenza i lati FE, FC; onde fatto centro il punto F, e con l'intervallo FE descrivendo un cerchio, passerà per il punto C. Descrivasi, e sia CEG: dico, questo esser il cerchio ricercato, a qualsivoglia punto della circonferenza del quale ogni coppia di linee che vi concorrano, partendosi da i termini A, B, aranno la medesima proporzione tra di loro che hanno le due parti AC, BC, le quali di già vi concorrono nel punto C. Questo, delle due che concorrono nel punto E, cioè delle AE, BE, è manifesto, essendo l'angolo E del triangolo AEB diviso in mezzo dalla CE; per lo che qual proporzione ha la AC alla CB, tale ha la AE alla BE. L'istesso proveremo delle due AG, BG, terminate nel punto G. Imperò che, essendo (per la similitudine de' triangoli AFE, EFB) come AF ad FE così EF ad FB, cioè come AF ad FC così CF ad FB, sarà , dividendo, come AC a CF (cioè ad FG) così CB a FB, e tutta AB a tutta BG come una CB ad una BF, e, componendo, come AG a GB così CF ad FB, cioè FE ad FB, cioè AE ad EB, ed AC a CB: il che bisognava provare. Prendasi ora qualsivoglia altro punto nella circonferenza, e sia H, al quale concorrano le due AH, BH: dico parimente, come AC a CB, così essere AH ad HB. Prolunghisi HB sino alla circonferenza in I, e congiungasi IF: e perché già si è visto, come AB a BG, così essere CB a BF, sarà il rettangolo ABF eguale al rettangolo CBG, cioè IBH, e però come AB a BH, così IB a BF; e sono gli angoli al B eguali; adunque AH ad HB sta come IF, cioè EF, ad FB, ed AE ad EB.
Dico, oltre a ciò, che è impossibile che le linee che abbiano tal proporzione, partendosi da i termini A, B, concorrano a verun punto o dentro o fuori del cerchio CEG. Imperò che, se è possibile, concorrano due tali linee al punto L, posto fuori, e siano le AL, BL, e prolunghisi la LB sino alla circonferenza in M, e congiungasi MF. Se dunque la AL alla BL è come la AC alla BC, cioè come la MF alla FB, aremo due triangoli ALB, MFB, li quali intorno alli due angoli ALB, MFB hanno i lati proporzionali, gli angoli alla cima nel punto B eguali, e li due rimanenti FMB, LAB minori che retti (imperò che l'angolo retto al punto M ha per base tutto il diametro CG, e non la sola parte BF; e l'altro al punto A è acuto, perché la linea AL, omologa della AC, è maggiore della BL, omologa della BC); adunque i triangoli ABL, MBF son simili, e però come AB a BL così MB a BF, onde il rettangolo ABF sarà eguale al rettangolo MBL: ma il rettangolo ABF s'è dimostrato eguale al CBG: adunque il rettangolo MBL è eguale al rettangolo CBG, il che è impossibile: adunque il concorso non può cader fuor del cerchio. E nel medesimo modo si dimostrerà , non poter cader dentro: adunque tutti i concorsi cascano nella circonferenza stessa.
Ma è tempo che torniamo a dar sodisfazione al desiderio del Sig. Simplicio, mostrandogli come il risolver la linea ne' suoi infiniti punti non è non solamente impossibile, ma né meno ha in sé maggior difficoltà che 'l distinguere le sue parti quante, fatto però un supposto, il quale penso, Sig. Simplicio, che non siate per negarmi: e questo è, che non mi ricercherete che io vi separi i punti l'uno dall'altro e ve li faccia veder a uno a uno distinti sopra questa carta, perché io ancora mi contenterei che, senza staccar l'una dall'altra le quattro o le sei parti d'una linea, mi mostraste le sue divisioni segnate, o al più piegate ad angoli, formandone un quadrato o un essagono; perché mi persuado pure che allora le chiamereste a bastanza distinte ed attuate.
SIMP. Veramente sì.
SALV. Ora, se l'inflettere una linea ad angoli, formandone ora un quadrato, ora un ottangolo, ora un poligono di quaranta, di cento o mille angoli, è mutazione bastante a ridurre all'atto quelle quattro, otto, quaranta, cento e mille parti che prima nella linea diritta erano, per vostro detto, in potenza, quando io formi di lei un poligono di lati infiniti, cioè quando io la infletta nella circonferenza d'un cerchio, non potrò io con pari licenza dire d'aver ridotto all'atto quelle parti infinite, che voi prima, mentre era retta, dicevi esser in lei contenute in potenza? Né si può negare, tal risoluzione esser fatta ne' suoi infiniti punti non meno che quella delle sue quattro parti nel formarne un quadrato, o nelle sue mille nel formarne un millagono; imperò che in lei non manca veruna delle condizioni che si trovano nel poligono di mille e di cento mila lati. Questo, applicato a una linea retta, se gli posa sopra toccandola con uno de' suoi lati, cioè con una sua centomillesima parte; il cerchio, che è un poligono di lati infiniti, tocca la medesima retta con uno de' suoi lati, che è un sol punto, diverso da tutti i suoi collaterali, e perciò da quelli diviso e distinto non meno che un lato del poligono da i suoi conterminali: e come il poligono rivoltato sopra un piano stampa con i toccamenti conseguenti de' suoi lati una linea retta eguale al suo perimetro, così il cerchio girato sopra un tal piano descrive con gl'infiniti suoi successivi contatti una linea retta egual alla propria circonferenza. Non so adesso, Sig. Simplicio, se i Signori Peripatetici, a i quali io ammetto, come verissimo concetto, il continuo esser divisibile in sempre divisibili, sì che continuando una tal divisione e suddivisione mai non si perverrebbe alla fine, si contenteranno di concedere a me, niuna delle tali loro divisioni esser l'ultima, come veramente non è, poiché sempre ve ne resta un'altra, ma bene l'ultima ed altissima esser quella che lo risolve in infiniti indivisibili, alla quale concedo che non si perverrebbe mai dividendo successivamente in maggiore e maggior moltitudine di parti; ma servendosi della maniera che propongo io, di distinguere e risolvere tutta la infinità in un tratto solo (artifizio che non mi dovrebbe esser negato), crederei che dovessero quietarsi, ed ammetter questa composizione del continuo di atomi assolutamente indivisibili, e massime essendo questa una strada forse più d'ogni altra corrente per trarci fuori di molto intrigati laberinti, quali sono, oltre a quello già toccato dalla coerenza delle parti de i solidi, il comprender come stia il negozio della rarefazzione e della condensazione, senza incorrer per causa di quella nell'inconveniente di dovere ammettere spazii vacui, e per questa la penetrazione de i corpi: inconvenienti, che amendue mi pare ch'assai destramente vengano schivati con l'ammetter detta composizione d'indivisibili.
SIMP. Io non so quello che i Peripatetici fusser per dire, atteso che le considerazioni fatte da voi credo che gli giugnerebbero per la maggior parte nuove, e come tali converrebbe esaminarle; e potrebbe accadere che quelli vi ritrovassero risposte e soluzioni potenti a sciorre quei nodi, che io, per la brevità del tempo e per la debolezza del mio ingegno, non saprei di presente risolvere. Però sospendendo per ora questa parte, sentirei ben volentieri come l'introduzzione di questi indivisibili faciliti l'intelligenza della condensazione e della rarefazzione, schivando ...
[Pagina successiva]