[Pagina precedente]...nell'istesso tempo il vacuo e la penetrazion de i corpi.
SAGR. Sentirò io ancora con gran brama la medesima cosa, all'intelletto mio tanto oscura; con questo però, che io non rimanga defraudato di sentire, conforme a quello che poco fa disse il Sig. Simplicio, le ragioni d'Aristotele in confutazion del vacuo, ed in consequenza le soluzioni che voi gli arrecate, come convien fare mentre voi ammettete quello che esso nega.
SALV. Faremo l'uno e l'altro. E quanto al primo, è necessario che, sì come in grazia della rarefazzione ci serviamo della linea descritta dal minor cerchio, maggiore della propria circonferenza, mentre vien mosso alla revoluzione del maggiore, così per intelligenza della condensazione mostriamo come alla conversione fatta dal minor cerchio il maggiore descriva una linea retta minore della sua circonferenza; per la cui più chiara esplicazione, porremo innanzi la considerazione di quello che accade ne i poligoni.
[v. figura 9]
In una descrizzione simile a quell'altra, siano due essagoni circa il comune centro L, che siano questi ABC, HIK, con le linee parallele HOM, ABc, sopra le quali si abbiano a far le revoluzioni; e fermato l'angolo I del poligono minore, volgasi esso poligono sin che il lato IK caschi sopra la parallela, nel qual moto il punto K descriverà l'arco KM, e 'l lato KI si unirà con la parte IM: tra tanto bisogna vedere quel che farà il lato CB del poligono maggiore. E perché il rivolgimento si fa sopra il punto I, la linea IB col termine suo B descriverà , tornando indietro, l'arco Bb sotto alla parallela cA, tal che quando il lato KI si congiugnerà con la linea MI, il lato BC si unirà con la linea bc, con l'avanzarsi per l'innanzi solamente quanto è la parte Bc e ritirando in dietro la parte suttesa all'arco Bb, la quale vien sopraposta alla linea BA. Ed intendendo continuarsi nell'istesso modo la conversione fatta dal minor poligono, questo descriverà bene e passerà sopra la sua parallela una linea eguale al suo perimetro; ma il maggiore passerà una linea minore del suo perimetro la quantità di tante linee bB quanti sono uno manco de' suoi lati; e sarà tal linea prossimamente eguale alla descritta dal poligono minore, eccedendola solamente di quanto è la bB. Qui dunque senza veruna repugnanza si scorge la cagione per la quale il maggior poligono non trapassi (portato dal minore) con i suoi lati linea maggiore della passata dal minore; che è perché una parte di ciascheduno de' lati si soprappone al suo precedente conterminale.
[v. figura 10]
Ma se considereremo i due cerchi intorno al centro A, li quali sopra le lor parallele posino, toccando il minore la sua nel punto B, ed il maggiore la sua nel punto C, qui nel cominciar a far la revoluzione del minore non avverrà che il punto B resti per qualche tempo immobile, sì che la linea BC dando in dietro trasporti il punto C, come accadeva ne i poligoni, che restando fisso il punto I sin che il lato KI cadesse sopra la linea IM, la linea IB riportava in dietro il B, termine del lato CB, sino in b, onde il lato BC cadeva in bc, soprapponendo alla linea BA la parte Bb e solo avanzandosi per l'innanzi la parte Bc, eguale alla IM, cioè a un lato del poligono minore; per le quali soprapposizioni, che sono gli eccessi de i lati maggiori sopra i minori, gli avanzi che restano, eguali a i lati del minor poligono, vengono a comporre nell'intera revoluzione la linea retta eguale alla segnata e misurata dal poligono minore. Ma qui dico, che se noi vorremo applicare un simil discorso all'effetto de i cerchi, converrà dire, che dove i lati di qualsivoglia poligono son compresi da qualche numero, i lati del cerchio sono infiniti: quelli son quanti e divisibili; questi, non quanti e indivisibili: i termini de i lati del poligono nella revoluzione stanno per qualche tempo fermi, cioè ciascheduno tal parte del tempo di una intera conversione, qual parte esso è di tutto il perimetro; ne i cerchi similmente le dimore de' termini de' suoi infiniti lati son momentanee, perché tal parte è un instante d'un tempo quanto, qual è un punto d'una linea, che ne contiene infiniti: i regressi in dietro fatti da i lati del maggior poligono sono non di tutto 'l lato, ma solamente dell'eccesso suo sopra 'l lato del minore, acquistando per l'innanzi tanto di spazio quanto è il detto minor lato; ne i cerchi il punto o lato C, nella quiete instantanea del termine B, si ritira in dietro quanto è il suo eccesso sopra 'l lato B, acquistando per l'innanzi quanto è il medesimo B: ed in somma gl'infiniti lati indivisibili del maggior cerchio con gl'infiniti indivisibili ritiramenti loro, fatti nell'infinite instantanee dimore de gl'infiniti termini de gl'infiniti lati del minor cerchio, e con i loro infiniti progressi, eguali a gl'infiniti lati di esso minor cerchio, compongono e disegnano una linea eguale alla descritta dal minor cerchio, contenente in sé infinite soprapposizioni non quante, che fanno una costipazione e condensazione senza veruna penetrazione di parti quante, quale non si può intendere farsi nella linea divisa in parti quante, quale è il perimetro di qualsivoglia poligono, il quale, disteso in linea retta, non si può ridurre in minor lunghezza se non col far che i lati si soprapponghino e penetrino l'un l'altro. Questa costipazione di parti non quante ma infinite, senza penetrazione di parti quante, e la prima distrazzione di sopra dichiarata de gl'infiniti indivisibili con l'interposizione di vacui indivisibili, credo che sia il più che dir si possa per la condensazione e rarefazzione de i corpi, senza necessità d'introdurre la penetrazione de i corpi e gli spazii quanti vacui. Se ci è cosa che vi gusti, fatene capitale; se no, reputatela vana, e 'l mio discorso ancora, e ricercate da qualche altro esplicazione di maggior quiete per l'intelletto. Solo queste due parole vi replico, che noi siamo tra gl'infiniti e gl'indivisibili.
SAGR. Che il pensiero sia sottile, ed a' miei orecchi nuovo e peregrino, lo confesso liberamente; se poi nel fatto stesso la natura proceda con tal ordine, non saprei che risolvermi: vero è che sin ch'io non sentissi cosa che maggiormente mi quietassi, per non rimaner muto affatto, m'atterrei a questa. Ma forse il Sig. Simplicio avrà (quello che sin qui non ho incontrato) modo di esplicare l'esplicazione che in materia così astrusa da i filosofi si arreca; ché in vero quel che sin qui ho letto circa la condensazione è per me così denso, e quel della rarefazzione così sottile, che la mia debol vista questo non comprende e quello non penetra.
SIMP. Io son pieno di confusione, e trovo duri intoppi nell'un sentiero e nell'altro, ed in particolare in questo nuovo: perché, secondo questa regola, un'oncia d'oro si potrebbe rarefare e distrarre in una mole maggiore di tutta la Terra, e tutta la Terra condensare e ridurre in minor mole di una noce, cose che io non credo, né credo che voi medesimo crediate; e le considerazioni e dimostrazioni sin qui fatte da voi, come che son cose matematiche, astratte e separate dalla materia sensibile, credo che applicate alle materie fisiche e naturali non camminerebbero secondo coteste regole.
SALV. Che io vi sia per far vedere l'invisibile, né io lo saprei fare, né credo voi lo ricerchiate; ma per quanto da i nostri sensi può esser compreso, già che voi avete nominato l'oro, non veggiam noi farsi immensa distrazzione delle sue parti? Non so se vi sia occorso di veder le maniere che tengono gli artefici in condur l'oro tirato, il quale non è veramente oro se non in superficie, ma la materia interna è argento: ed il modo del condurlo è tale. Pigliano un cilindro, o volete dire una verga, d'argento, lunga circa mezzo braccio e grossa per tre o quattro volte il dito pollice, e questa indorano con foglie d'oro battuto, che sapete esser così sottile che quasi va vagando per l'aria, e di tali foglie ne soprappongono otto o dieci, e non più. Dorato che è, cominciano a tirarlo con forza immensa, facendolo passare per fori della filiera; e tornando a farlo ripassare molte e molte volte successivamente per fori più angusti, dopo molte e molte ripassate lo riducono alla sottigliezza d'un capello di donna, se non maggiore: e tuttavia resta dorato in superficie. Lascio ora considerare a voi quale sia la sottigliezza e distrazzione alla quale si è ridotta la sustanza dell'oro.
SIMP. Io non veggo che da questa operazione venga in consequenza un assottigliamento della materia dell'oro da farne quelle maraviglie che voi vorreste: prima, perché già la prima doratura fu di dieci foglie d'oro, che vengono a far notabile grossezza; secondariamente, se ben, nel tirare e assottigliar quell'argento, cresce in lunghezza, scema però anco tanto in grossezza, che, compensando l'una dimensione con l'altra, la superficie non si agumenta tanto, che per vestir l'argento di oro, bisogni ridurlo a sottigliezza maggiore di quella delle prime foglie.
SALV. V'ingannate d'assai, Sig. Simplicio, perché l'accrescimento della superficie è sudduplo dell'allungamento, come io potrei geometricamente dimostrarvi.
SAGR. Io, e per me e per il Sig. Simplicio, vi pregherei a recarci tal dimostrazione, se però credete che da noi possa esser capita.
SALV. Vedrò se così improvisamente mi torna a memona. Già è manifesto, che quel primo grosso cilindro d'argento ed il filo lunghissimo tirato sono due cilindri eguali, essendo l'istesso argento; tal che s'io mostrerò qual proporzione abbiano tra di loro le superficie de i cilindri eguali, averemo l'intento. Dico per tanto che:
Le superficie de i cilindri eguali, trattone le basi, son tra di loro in sudduplicata proporzione delle loro lunghezze.
[v. figura 11]
Siano due cilindri eguali, l'altezze de i quali AB, CD, e sia la linea E media proporzionale tra esse: dico, la superficie del cilindro AB, trattone le basi, alla superficie del cilindro CD, trattone parimente le basi, aver la medesima proporzione che la linea AB alla linea E, che è suddupla dalla proporzione di AB a CD. Taglisi la parte del cilindro AB in F, e sia l'altezza AF eguale alla CD: e perché le basi de' cilindri eguali rispondon contrariamente alle loro altezze, il cerchio base del cilindro CD al cerchio base del cilindro AB sarà come l'altezza BA alla DC; e perché i cerchi son tra loro come i quadrati de i diametri, aranno detti quadrati la medesima proporzione che la BA alla CD; ma come BA a CD, così il quadrato BA al quadrato della E: son dunque tali quattro quadrati proporzionali; e però i lor lati ancora saranno proporzionali, e come la linea AB alla E, così il diametro del cerchio C al diametro del cerchio A. Ma come i diametri, così sono le circonferenze, e come le circonferenze così sono ancora le superficie de' cilindri egualmente alti: adunque come la linea AB alla E, così la superficie del cilindro CD alla superficie del cilindro AF. Perché dunque l'altezza AF alla AB sta come la superficie AF alla superficie AB; e come l'altezza AB alla linea E, così la superficie CD alla AF: sarà , per la perturbata, come l'altezza AF alla E, così la superficie CD alla superficie AB: e convertendo, come la superficie del cilindro AB alla superficie del cilindro CD, così la linea E alla AF, cioè alla CD, o vero la AB alla E, che è proporzione suddupla della AB alla CD: che è quello che bisognava provare.
Ora, se noi applicheremo questo, che si è dimostrato, al nostro proposito, presupposto che quel cilindro d'argento, che fu dorato mentre non era più lungo di mezzo braccio e grosso tre o quattro volte più del dito pollice, assottigliato alla finezza d'un capello si sia allungato sino in venti mila braccia (che sarebbe anche più assai), troveremo, la sua superficie esser cresciuta dugento volte più di quello che era; ed in consequenza quelle foglie d'oro, che furon soprapposte dieci in numero, distese in superficie dugento volte maggiore, ci assicurano, l'oro, che cuopre la superficie delle tante braccia di filo, restar non più grosso che la ventesima parte d'una foglia dell'ordinario oro b...
[Pagina successiva]