[Pagina precedente]...
[v. figura 67]
Se, tracciata una linea retta comunque inclinata sull'orizzontale, si conduce da un dato punto dell'orizzontale fino alla linea inclinata il piano, sul quale la discesa si svolge nel tempo più breve, tale piano sarà quello che divide a metà l'angolo compreso tra le due perpendicolari che, dal punto dato, vengano condotte, l'una alla linea orizzontale, l'altra alla linea inclinata.
LEMMA
[v. figura 68]
Date due circonferenze tangenti internamente l'una all'altra, se una retta qualsiasi è tangente alla circonferenza interna e interseca la circonferenza esterna, le tre linee condotte dal punto di contatto delle circonferenze ai tre punti della linea retta tangente - cioè al punto di contatto di essa con la circonferenza interna e ai due punti di intersezione di essa con la circonferenza esterna - formeranno angoli eguali [aventi per vertice] il punto di contatto delle circonferenze.
TEOREMA 21. PROPOSIZIONE 32
Se sull'orizzontale si prendono due punti e, a partire da uno di essi, si traccia una qualsiasi linea inclinata verso la parte dell'altro punto, e se a partire da quest'ultimo si conduce una linea retta, la quale incontri la predetta inclinata determinando su di essa un tratto eguale alla distanza fra i due punti dati sull'orizzontale, la caduta lungo questa retta si compirà più presto che non lungo qualsiasi altra retta condotta da quel medesimo punto fino a incontrare la medesima inclinata. Prese poi due rette qualsiasi, che formino con la retta data due angoli eguali da una parte e dall'altra, i tempi di caduta lungo di esse saranno eguali tra di loro.
PROBLEMA 12. PROPOSIZIONE 33
Dati una perpendicolare e un piano ad essa inclinato, che abbiano la medesima altezza e lo stesso estremo superiore, trovare lungo la perpendicolare, al di sopra dell'estremo in comune, un punto tale, che se da esso si lascia cadere un mobile, il quale venga poi fatto deviare sul piano inclinato, [quel mobile] percorra questo piano nello stesso tempo in cui percorrerebbe la perpendicolare a partire dalla quiete.
PROBLEMA 13. PROPOSIZIONE 34
Dati un piano inclinato e una perpendicolare, che abbiano il medesimo estremo superiore, trovare sul prolungamento della perpendicolare un punto più alto [dell'estremo comune], tale che un mobile, il quale cada da esso e sia deviato sul piano inclinato, li percorra entrambi in un tempo eguale a quello in cui percorrerebbe il solo piano inclinato [se partisse] dalla quiete nell'estremo superiore di questo.
PROBLEMA 14. PROPOSIZIONE 35
Data una perpendicolare e data una retta inclinata su di essa, determinare sull'inclinata un tratto, il quale da solo, [con movimento] a partire dalla quiete, sia percorso in un tempo eguale a quello impiegato a percorrere la medesima inclinata insieme alla perpendicolare.
TEOREMA 22. PROPOSIZIONE 36
Se in un cerchio, eretto sull'orizzonte, dal suo punto più basso si innalza un piano inclinato, il quale sottenda un arco non maggiore di un quadrante, e se dagli estremi di tale piano si conducono due altri piani inclinati a un qualsiasi punto dell'arco, la discesa lungo [il sistema di] questi due ultimi piani inclinati si compirà in minor tempo che lungo il solo primo piano inclinato, o che lungo uno soltanto di questi due ultimi piani, e precisamente l'inferiore.
SCOLIO
[v. figura 69]
Da quanto si è dimostrato sembra si possa ricavare che il movimento più veloce da estremo ad estremo non avviene lungo la linea più breve, cioè la retta, ma lungo un arco di cerchio. Infatti, nel quadrante BAEC, il cui lato BC sia eretto sull'orizzonte, si divida l'arco AC in un numero qualsiasi di parti eguali AD, DE, EF, FG, GC; da C si conducano le corde ai punti A, D, E, F, G, e si traccino pure le corde AD, DE, EF, FG, G C: è manifesto che il movimento lungo [il sistema del]le due corde ADC si compie più presto che lungo la sola AC, o lungo DC a partire dalla quiete in D. Ma a partire dalla quiete in A, DC viene percorsa più presto di ADC: ma lungo le due DEC a partire dalla quiete in A, è verisimile che la discesa si compia più presto che non lungo la sola CD: dunque, la discesa lungo le tre corde ADEC si compie più presto che non lungo le due ADC. E similmente, dopo la discesa lungo ADE, il movimento si svolge più presto lungo le due corde EFC che non lungo la sola EC; dunque, lungo le quattro corde ADEFC il movimento si svolge più presto che non lungo le tre ADEC. E infine, lungo le due corde FGC, dopo la discesa lungo ADEF, il movimento si compie più presto che non lungo la sola FC; dunque, lungo le cinque corde ADEFGC la discesa si svolge in un tempo ancora più breve che non lungo le quattro ADEFC. Pertanto, quanto più, con poligoni inscritti [poligonali iscritte] ci avviciniamo alla circonferenza, tanto più presto si compie il moto tra i due segnati estremi A e C.
Ciò che si è mostrato in un quadrante, accade anche in un arco di circonferenza minore di un quadrante; e identico è il ragionamento.
PROBLEMA 15. PROPOSIZIONE 37
Dati una perpendicolare e un piano inclinato, che abbiano la medesima elevazione, trovare sul piano inclinato un tratto, il quale sia eguale alla perpendicolare e venga percorso nello stesso tempo di quest'ultima.
PROBLEMA 16. PROPOSIZIONE 38
Dati due piani orizzontali intersecati da una perpendicolare, trovare su questa, in alto, un punto tale, che due mobili, i quali cadano da quel punto e vengano deviati sui piani orizzontali, percorrano su di questi, cioè sul piano orizzontale superiore e su quello inferiore, in tempi eguali a quelli della loro [rispettiva] caduta, spazi tali che abbiano tra loro una proporzione eguale a una qualsiasi proporzione data fra una [grandezza] minore e una maggiore.
SAGR. Parmi veramente che conceder si possa al nostro Accademico, che egli senza iattanza abbia nel principio di questo suo trattato potuto attribuirsi di arrecarci una nuova scienza intorno a un suggetto antichissimo. Ed il vedere con quanta facilità e chiarezza da un solo semplicissimo principio ei deduca le dimostrazioni di tante proposizioni, mi fa non poco maravigliare come tal materia sia passata intatta da Archimede, Apollonio, Euclide e tanti altri matematici e filosofi illustri, e massime che del moto si trovano scritti volumi grandi e molti.
SALV. Si vede un poco di fragmento d'Euclide intorno al moto, ma non vi si scorge vestigio che egli s'incaminasse all'investigazione della proporzione dell'accelerazione e delle sue diversità sopra le diverse inclinazioni. Tal che veramente si può dire, essersi non prima che ora aperta la porta ad una nuova contemplazione, piena di conclusioni infinite ed ammirande, le quali ne i tempi avenire potranno esercitare altri ingegni.
SAGR. Io veramente credo, che sì come quelle poche passioni (dirò per esempio) del cerchio, dimostrate nel terzo de' suoi Elementi da Euclide, sono l'ingresso ad innumerabili altre più recondite, così le prodotte e dimostrate in questo breve trattato, quando passasse nelle mani di altri ingegni specolativi, sarebbe strada ad altre ed altre più maravigliose; ed è credibile che così seguirebbe, mediante la nobiltà del soggetto sopra tutti gli altri naturali.
Lunga ed assai laboriosa giornata è stata questa d'oggi, nella quale ho gustato più delle semplici proposizioni che delle loro dimostrazioni, molte delle quali credo che, per ben capirle, mi porteranno via più d'un'ora per ciascheduna: studio che mi riserbo a farlo con quiete, lasciandomi V. S. il libro nelle mani, dopo che avremo veduto questa parte che resta intorno al moto de i proietti; che sarà , se così gli piace, nel seguente giorno.
SALV. Non mancherò d'esser con lei.
Finisce la terza Giornata
GIORNATA QUARTA
SALV. Attempo arriva ancora il Sig. Simplicio; però, senza interpor quiete, venghiamo al moto: ed ecco il testo del nostro Autore.
DEL MOTO DEI PROIETTI
Le proprietà che si presentano nel moto equabile, come pure nel moto naturalmente accelerato su piani di qualsiasi inclinazione, le abbiamo considerate sopra. Nella trattazione, che ora comincio, cercherò di presentare, e di stabilire sulla base di salde dimostrazioni, alcuni fenomeni notevoli e degni di essere conosciuti, che sono propri di un mobile, mentre si muove con moto composto di un duplice movimento, cioè di un movimento equabile e di uno naturalmente accelerato: tale appunto sembra essere quello che chiamiamo moto dei proietti; la generazione del quale così stabilisco.
Immagino di avere un mobile lanciato su un piano orizzontale, rimosso ogni impedimento: già sappiamo, per quello che abbiamo detto più diffusamente altrove, che il suo moto si svolgerà equabile e perpetuo sul medesimo piano, qualora questo si estenda all'infinito; se invece intendiamo [questo piano] limitato e posto in alto, il mobile, che immagino dotato di gravità , giunto all'estremo del piano e continuando la sua corsa, aggiungerà al precedente movimento equabile e indelebile quella propensione all'ingiù dovuta alla propria gravità : ne nasce un moto composto di un moto orizzontale equabile e di un moto deorsum naturalmente accelerato, il quale [moto composto] chiamo proiezione. Ne dimostreremo parecchie proprietà : la prima delle quali sia [la seguente].
TEOREMA 1. PROPOSIZIONE 1
Un proietto, mentre si muove di moto composto di un moto orizzontale equabile e di un moto deorsum naturalmente accelerato, descrive nel suo movimento una linea semiparabolica.
SAGR. È forza, Sig. Salviati, in grazia di me, ed anco, credo io, del Sig. Simplicio, far qui un poco di pausa; avvenga che io non mi son tanto inoltrato nella geometria, che io abbia fatto studio in Apollonio, se non in quanto so ch'ei tratta di queste parabole e dell'altre sezzioni coniche, senza la cognizione delle quali e delle lor passioni non credo che intendersi possano le dimostrazioni di altre proposizioni a quelle aderenti. E perché già nella bella prima proposizione ci vien proposto dall'Autore, doversi dimostrare, la linea descritta dal proietto esser parabolica, mi vo imaginando che, non dovendosi trattar d'altro che di tali linee, sia assolutamente necessario avere una perfetta intelligenza, se non di tutte le passioni di tali figure dimostrate da Apollonio, almeno di quelle che per la presente scienza son necessarie.
SALV. V. S. si umilia molto, volendosi far nuovo di quelle cognizioni le quali non è gran tempo che ammesse come ben sapute, allora, dico, che nel trattato delle resistenze avemmo bisogno della notizia di certa proposizione d'Apollonio, sopra la quale ella non mosse difficoltà .
SAGR. Può essere o che io la sapessi per ventura o che io la supponessi per una volta tanto che ella mi bisognò in tutto quel trattato: ma qui, dove mi imagino d'avere a sentir tutte le dimostrazioni circa tali linee, non bisogna, come si dice, bever grosso, buttando via il tempo e la fatica.
SIMP. E poi, rispetto a me, quando bene, come credo, il Sig. Sagredo fusse ben corredato di tutti i suoi bisogni, a me cominciano già a giugner come nuovi gli stessi primi termini; perché, se bene i nostri filosofi hanno trattata questa materia del moto de' proietti, non mi sovvien che si siano ristretti a definire quali siano le linee da quelli descritte, salvo che assai generalmente sian sempre linee curve, eccetto che nelle proiezzioni perpendicolari sursum. Però, quando quel poco di geometria che io ho appreso da Euclide, da quel tempo in qua che noi avemmo altri discorsi, non sia bastante per rendermi capace delle cognizioni necessarie per l'intelligenza delle seguenti dimostrazioni, mi converrà contentarmi delle sole proposizioni credute, ma non sapute.
SALV. Anzi voglio io che le sappiate mercé dell'istesso Autor dell'opera, il quale, quando già mi concesse di veder questa sua fatica, perché io ancora in quella volta non aveva in pronto i libri di Apollonio, s'ingegnò di dimostrarmi due passioni principalissime di essa parabola, senza veruna altra precognizione, delle quali sole siamo bisognosi nel presente trattato: le ...
[Pagina successiva]