[Pagina precedente]...ausa della sua accelerazione) talmente, che i momenti della sua velocità vadano accrescendosi, dopo la sua partita dalla quiete, con quella semplicissima proporzione con la quale cresce la continuazion del tempo, che è quanto dire che in tempi eguali si facciano eguali additamenti di velocità ; e se s'incontrerà che gli accidenti che poi saranno dimostrati si verifichino nel moto de i gravi naturalmente descendenti ed accelerati, potremo reputare che l'assunta definizione comprenda cotal moto de i gravi, e che vero sia che l'accelerazione loro vadia crescendo secondo che cresce il tempo e la durazione del moto.
SAGR. Per quanto per ora mi si rappresenta all'intelletto, mi pare che con chiarezza forse maggiore si fusse potuto definire, senza variare il concetto: Moto uniformemente accelerato esser quello, nel qual la velocità andasse crescendo secondo che cresce lo spazio che si va passando; sì che, per esempio, il grado di velocità acquistato dal mobile nella scesa di quattro braccia fusse doppio di quello ch'egli ebbe sceso che e' fu lo spazio di due, e questo doppio del conseguito nello spazio del primo braccio. Perché non mi par che sia da dubitare, che quel grave che viene dall'altezza di sei braccia, non abbia e perquota con impeto doppio di quello che ebbe, sceso che fu tre braccia, e triplo di quello che ebbe alle due, e sescuplo dell'auto nello spazio di uno.
SALV. Io mi consolo assai d'aver auto un tanto compagno nell'errore; e più vi dirò che il vostro discorso ha tanto del verisimile e del probabile, che il nostro medesimo Autore non mi negò, quando io glielo proposi, d'esser egli ancora stato per qualche tempo nella medesima fallacia. Ma quello di che io poi sommamente mi maravigliai, fu il vedere scoprir con quattro semplicissime parole, non pur false, ma impossibili, due proposizioni che hanno del verisimile tanto, che avendole io proposte a molti, non ho trovato chi liberamente non me l'ammettesse.
SIMP. Veramente io sarei del numero de i conceditori: e che il grave descendente vires acquirat eundo, crescendo la velocità a ragion dello spazio, e che 'l momento dell'istesso percuziente sia doppio venendo da doppia altezza, mi paiono proposizioni da concedersi senza repugnanza o controversia.
SALV. E pur son tanto false e impossibili, quanto che il moto si faccia in un instante: ed eccovene chiarissima dimostrazione. Quando le velocità hanno la medesima proporzione che gli spazii passati o da passarsi, tali spazii vengon passati in tempi eguali; se dunque le velocità con le quali il cadente passò lo spazio di quattro braccia, furon doppie delle velocità con le quali passò le due prime braccia (sì come lo spazio è doppio dello spazio), adunque i tempi di tali passaggi sono eguali: ma passare il medesimo mobile le quattro braccia e le due nell'istesso tempo, non può aver luogo fuor che nel moto instantaneo: ma noi veggiamo che il grave cadente fa suo moto in tempo, ed in minore passa le due braccia che le quattro; adunque è falso che la velocità sua cresca come lo spazio. L'altra proposizione si dimostra falsa con la medesima chiarezza. Imperò che, essendo quello che perquote il medesimo, non può determinarsi la differenza e momento delle percosse se non dalla differenza della velocità : quando dunque il percuziente, venendo da doppia altezza, facesse percossa di doppio momento, bisognerebbe che percotesse con doppia velocità : ma la doppia velocità passa il doppio spazio nell'istesso tempo, e noi veggiamo il tempo della scesa dalla maggior altezza esser più lungo.
SAGR. Troppa evidenza, troppa agevolezza, è questa con la quale manifestate conclusioni ascoste: questa somma facilità le rende di minor pregio che non erano mentre stavano sotto contrario sembiante. Poco penso io che prezzerebbe l'universale notizie acquistate con sì poca fatica, in comparazione di quelle intorno alle quali si fanno lunghe ed inesplicabili altercazioni.
SALV. A quelli i quali con gran brevità e chiarezza mostrano le fallacie di proposizioni state comunemente tenute per vere dall'universale, danno assai comportabile sarebbe il riportarne solamente disprezzo, in luogo di aggradimento; ma bene spiacevole e molesto riesce cert'altro affetto che suol tal volta destarsi in alcuni, che, pretendendo ne i medesimi studii almeno la parità con chiunque si sia, si veggono aver trapassate per vere conclusioni che poi da un altro con breve e facile discorso vengono scoperte e dichiarate false. Io non chiamerò tale affetto invidia, solita a convertirsi poi in odio ed ira contro agli scopritori di tali fallacie, ma lo dirò uno stimolo e una brama di voler più presto mantener gli errori inveterati, che permetter che si ricevano le verità nuovamente scoperte; la qual brama tal volta gl'induce a scrivere in contradizione a quelle verità , pur troppo internamente conosciute anco da loro medesimi, solo per tener bassa nel concetto del numeroso e poco intelligente vulgo l'altrui reputazione. Di simili conclusioni false, ricevute per vere e di agevolissima confutazione, non piccol numero ne ho io sentite dal nostro Academico, di parte delle quali ho anco tenuto registro.
SAGR. E V. S. non dovrà privarcene, ma a suo tempo farcene parte, quando ben anco bisognasse in grazia loro fare una particolar sessione. Per ora, continuando il nostro filo, parmi che sin qui abbiamo fermata la definizione del moto uniformemente accelerato, del quale si tratta ne i discorsi che seguono; ed è:
Moto equabilmente, ossia uniformemente accelerato, diciamo quello che, a partire dalla quiete, in tempi eguali acquista eguali momenti di velocità .
SALV. Fermata cotal definizione, un solo principio domanda e suppone per vero l'Autore, cioè:
Assumo che i gradi di velocità , acquistati da un medesimo mobile su piani diversamente inclinati, siano eguali allorché sono eguali le elevazioni di quei piani medesimi.
Chiama la elevazione di un piano inclinato la perpendicolare che dal termine sublime di esso piano casca sopra la linea orizontale prodotta per l'infimo termine di esso piano inclinato; [v. figura 41] come, per intelligenza, essendo la linea AB parallela all'orizonte, sopra 'l quale siano inclinati li due piani CA, CD, la perpendicolare CB, cadente sopra l'orizontale BA, chiama l'Autore la elevazione de i piani CA, CD; e suppone che i gradi di velocità del medesimo mobile scendente per li piani inclinati CA, CD, acquistati ne i termini A, D, siano eguali, per esser la loro elevazione l'istessa CB: e tanto anco si deve intendere il grado di velocità che il medesimo cadente dal punto C arebbe nel termine B.
SAGR. Veramente mi par che tal supposto abbia tanto del probabile, che meriti di esser senza controversia conceduto, intendendo sempre che si rimuovano tutti gl'impedimenti accidentarii ed esterni, e che i piani siano ben solidi e tersi ed il mobile di figura perfettissimamente rotonda, sì che ed il piano ed il mobile non abbiano scabrosità . Rimossi tutti i contrasti ed impedimenti, il lume naturale mi detta senza difficoltà , che una palla grave e perfettamente rotonda, scendendo per le linee CA, CD, CB, giugnerebbe ne i termini A, D, B con impeti eguali.
SALV. Voi molto probabilmente discorrete; ma, oltre al verisimile, voglio con una esperienza accrescer tanto la probabilità , che poco gli manchi all'agguagliarsi ad una ben necessaria dimostrazione. [v. figura 42] Figuratevi, questo foglio essere una parete eretta all'orizonte, e da un chiodo fitto in essa pendere una palla di piombo d'un'oncia o due, sospesa dal sottil filo AB, lungo due o tre braccia, perpendicolare all'orizonte, e nella parete segnate una linea orizontale DC, segante a squadra il perpendicolo AB, il quale sia lontano dalla parete due dita in circa; trasferendo poi il filo AB con la palla in AC, lasciate essa palla in libertà : la quale primieramente vedrete scendere descrivendo l'arco CBD, e di tanto trapassare il termine B, che, scorrendo per l'arco BD, sormonterà sino quasi alla segnata parallela CD, restando di pervenirvi per piccolissimo intervallo, toltogli il precisamente arrivarvi dall'impedimento dell'aria e del filo; dal che possiamo veracemente concludere, che l'impeto acquistato nel punto B dalla palla, nello scendere per l'arco CB, fu tanto, che bastò a risospingersi per un simile arco BD alla medesima altezza. Fatta e più volte reiterata cotale esperienza, voglio che ficchiamo nella parete, rasente al perpendicolo AB, un chiodo, come in E o vero in F, che sporga in fuori cinque o sei dita, e questo acciò che il filo AC, tornando, come prima, a riportar la palla C per l'arco CB, giunta che ella sia in B, intoppando il filo nel chiodo E, sia costretta a camminare per la circonferenza BG, descritta intorno al centro E; dal che vedremo quello che potrà far quel medesimo impeto che, dianzi, concepito nel medesimo termine B, sospinse l'istesso mobile per l'arco BD all'altezza della orizontale CD. Ora, Signori, voi vedrete con gusto condursi la palla all'orizontale nel punto G, e l'istesso accadere se l'intoppo si mettesse più basso, come in F, dove la palla descriverebbe l'arco BI, terminando sempre la sua salita precisamente nella linea CD; e quando l'intoppo del chiodo fusse tanto basso che l'avanzo del filo sotto di lui non arrivasse all'altezza di CD (il che accaderebbe quando fusse più vicino al punto B che al segamento dell'AB con l'orizontale CD), allora il filo cavalcherebbe il chiodo e se gli avvolgerebbe intorno. Questa esperienza non lascia luogo di dubitare della verità del supposto: imperò che, essendo li due archi CB, DB eguali e similmente posti, l'acquisto di momento fatto per la scesa nell'arco CB è il medesimo che il fatto per la scesa dell'arco DB; ma il momento acquistato in B per l'arco CB è potente a risospingere in su il medesimo mobile per l'arco BD; adunque anco il momento acquistato nella scesa DB è eguale a quello che sospigne l'istesso mobile per il medesimo arco da B in D; sì che, universalmente, ogni momento acquistato per la scesa d'un arco è eguale a quello che può far risalire l'istesso mobile per il medesimo arco: ma i momenti tutti che fanno risalire per tutti gli archi BD, BG, BI sono eguali, poiché son fatti dall'istesso medesimo momento acquistato per la scesa CB, come mostra l'esperienza; adunque tutti i momenti che si acquistano per le scese ne gli archi DB, GB, IB sono eguali.
SAGR. Il discorso mi par concludentissimo, e l'esperienza tanto accomodata per verificare il postulato, che molto ben sia degno d'esser conceduto come se fusse dimostrato.
SALV. Io non voglio, Sig. Sagredo, che noi ci pigliamo più del dovere, e massimamente che di questo assunto ci abbiamo a servire principalmente ne i moti fatti sopra superficie rette, e non sopra curve, nelle quali l'accelerazione procede con gradi molto differenti da quelli con i quali noi pigliamo ch'ella proceda ne' piani retti. Di modo che, se ben l'esperienza addotta ci mostra che la scesa per l'arco CB conferisce al mobile momento tale, che può ricondurlo alla medesima altezza per qualsivoglia arco BD, BG, BI, noi non possiamo con simile evidenza mostrare che l'istesso accadesse quando una perfettissima palla dovesse scendere per piani retti, inclinati secondo le inclinazioni delle corde di questi medesimi archi; anzi è credibile che, formandosi angoli da essi piani retti nel termine B, la palla scesa per l'inclinato secondo la corda CB, trovando intoppo ne i piani ascendenti secondo le corde BD, BG, BI, nell'urtare in essi perderebbe del suo impeto, né potrebbe, salendo, condursi all'altezza della linea CD: ma levato l'intoppo, che progiudica all'esperienza, mi par bene che l'intelletto resti capace, che l'impeto (che in effetto piglia vigore dalla quantità della scesa) sarebbe potente a ricondurre il mobile alla medesima altezza. Prendiamo dunque per ora questo come postulato, la verità assoluta del quale ci verrà poi stabilita dal vedere altre conclusioni, fabbricate sopra tale ipotesi, rispondere e puntualmente confrontarsi con l'esperienz...
[Pagina successiva]