[Pagina precedente]... come il quadrato KL al quadrato MN, cioè come il cilindro E al cilindro X, cioè come il momento E al momento X; ma la resistenza KL alla MN è come il cubo di KL al cubo di MN, cioè come il cubo DC al cubo KL, cioè come il cilindro A al cilindro E, cioè come il momento A al momento E; adunque, per l'analogia perturbata, come la resistenza DC alla MN, così il momento A al momento X: adunque il prisma X è nella medesima costituzione di momento e resistenza che il prisma A.
Ma voglio che facciamo il problema più generale; e la proposizione sia questa:
Dato il cilindro AC, qualunque si sia il suo momento verso la sua resistenza, e data qual si sia lunghezza DE, trovar la grossezza del cilindro, la cui lunghezza sia DE, e 'l suo momento verso la sua resistenza ritenga la medesima proporzione che il momento del cilindro AC alla sua.
Ripresa l'istessa figura di sopra e quasi l'istesso progresso, diremo: perché il momento del cilindro FE al momento della parte DG ha la medesima proporzione che il quadrato ED al quadrato FG, cioè che la linea DE alla I; ed il momento del cilindro FG al momento del cilindro AC è come il quadrato FD al quadrato AB, cioè come il quadrato DE al quadrato I, cioè come il quadrato I al quadrato M, cioè come la linea I alla O; adunque ex æquali, il momento del cilindro FE al momento del cilindro AC ha la medesima proporzione della linea DE alla O, cioè del cubo DE al cubo I, cioè del cubo di FD al cubo di AB, cioè della resistenza della base FD alla resistenza della base AB: ch'è quello che si doveva fare.
Or vegghino come dalle cose sin qui dimostrate apertamente si raccoglie l'impossibilità del poter non solamente l'arte, ma la natura stessa, crescer le sue macchine a vastità immensa: sì che impossibil sarebbe fabbricar navilii, palazzi o templi vastissimi, li cui remi, antenne, travamenti, catene di ferro, ed in somma le altre lor parti, consistessero; come anco non potrebbe la natura far alberi di smisurata grandezza, poiché i rami loro, gravati dal proprio peso, finalmente si fiaccherebbero; e parimente sarebbe impossibile far strutture di ossa per uomini, cavalli o altri animali, che potessero sussistere e far proporzionatamente gli uffizii loro, mentre tali animali si dovesser agumentare ad altezze immense, se già non si togliesse materia molto più dura e resistente della consueta, o non si deformassero tali ossi, sproporzionatamente ingrossandogli, onde poi la figura ed aspetto dell'animale ne riuscisse mostruosamente grosso: il che forse fu avvertito dal mio accortissimo Poeta, mentre descrivendo un grandissimo gigante disse:
Non si può compatir quanto sia lungo,
Sì smisuratamente è tutto grosso.
E per un breve esempio di questo che dico, disegnai già la figura di un osso allungato solamente tre volte, ed ingrossato con tal proporzione, che potesse nel suo animale grande far l'uffizio proporzionato a quel dell'osso minore nell'animal più piccolo, e le figure son queste [v. figura 28]: dove vedete sproporzionata figura che diviene quella dell'osso ingrandito. Dal che è manifesto, che chi volesse mantener in un vastissimo gigante le proporzioni che hanno le membra in un uomo ordinario, bisognerebbe o trovar materia molto più dura e resistente, per formarne l'ossa, o vero ammettere che la robustezza sua fusse a proporzione assai più fiacca che ne gli uomini di statura mediocre; altrimente, crescendogli a smisurata altezza, si vedrebbono dal proprio peso opprimere e cadere. Dove che, all'incontro, si vede, nel diminuire i corpi non si diminuir con la medesima proporzione le forze, anzi ne i minimi crescer la gagliardia con proporzion maggiore: onde io credo che un piccolo cane porterebbe addosso due o tre cani eguali a sé, ma non penso già che un cavallo portasse né anco un solo cavallo, a se stesso eguale.
SIMP. Ma se così è, grand'occasione mi danno di dubitare le moli immense che vediamo ne i pesci; ché tal balena, per quanto intendo, sarà grande per dieci elefanti; e pur si sostengono.
SALV. Il vostro dubbio, Sig. Simplicio, mi fa accorgere d'una condizione da me non avvertita prima, potente essa ancora a far che giganti ed altri animali vastissimi potessero consistere e agitarsi non meno che i minori: e ciò seguirebbe quando non solo si aggiugnesse gagliardia all'ossa ed all'altre parti, offizio delle quali è il sostener il proprio e 'l sopravegnente peso; ma, lasciata la struttura delle ossa con le medesime proporzioni, pur nell'istesso modo, anzi più agevolmente, consisterebbono le medesime fabbriche quando con tal proporzione si diminuisse la gravità della materia delle medesime ossa, e quella della carne o di altro che sopra l'ossa si abbia ad appoggiare. E di questo secondo artifizio si è prevalsa la natura nella fabbrica de i pesci, facendogli le ossa e le polpe non solamente assai leggiere, ma senza veruna gravità .
SIMP. Veggo bene, Sig. Salviati, dove tende il vostro discorso: voi volete dire, che per esser l'abitazione de i pesci l'elemento dell'acqua, la quale per la sua corpulenza, o, come altri vogliono, per la sua gravità , scema il peso a i corpi che in quella si demergono, per tal ragione la materia de i pesci, non pesando, può senza aggravio dell'ossa loro esser sostenuta. Ma questo non basta; perché quando bene il resto della sustanza del pesce non graviti, grava però senza dubbio la materia dell'ossa loro. E chi dirà che una costola di balena, grande quanto una trave, non pesi assaissimo, e nell'acqua non vadia al fondo? Queste dunque non deveriano poter sussistere in sì vasta mole.
SALV. Voi acutamente opponete: e per risposta al vostro dubbio, ditemi se avete osservato stare i pesci, quando piace loro, sott'acqua immobili, e non descendere verso 'l fondo o sollevarsi alla superficie senza far qualche forza col nuoto?
SIMP. Questa è chiarissima osservazione.
SALV. Questo, dunque, potersi i pesci fermare come immobili a mezz'acqua è concludentissimo argomento, il composto della lor mole corporea agguagliar la gravità in spezie dell'acqua; sì che se in esso si trovano alcune parti più gravi dell'acqua, necessariamente bisogna che ve ne siano altre altrettanto men gravi, acciò si possa pareggiar l'equilibrio. Se dunque le ossa son più gravi, è necessario che le polpe, o altre materie che vi siano, sien più leggiere, e queste si opporranno con la lor leggerezza al peso dell'ossa: talché ne gli acquatici avverrà l'opposito di quel che accade ne gli animali terrestri, cioè che in questi tocchi all'ossa a sostenere il peso proprio e quel della carne, e in quelli la carne regga la gravezza propria e quella dell'ossa. E però deve cessar la maraviglia, come nell'acqua possano essere animali vastissimi, ma non sopra la terra, cioè nell'aria.
SIMP. Resto appagato; e di più noto che questi, che noi addimandiamo animali terrestri, più ragionevolmente si devrebbero dimandar aerei, perché nell'aria veramente vivono, e dall'aria son circondati e dell'aria respirano.
SAGR. Piacemi il discorso del Sig. Simplicio, col suo dubbio e con la soluzione: e di più comprendo assai facilmente che uno di questi smisurati pesci, tirato in terra, forse non si potrebbe per lungo tempo sostenere, ma che, relassate le attaccature dell'ossa, la sua mole si ammaccherebbe.
SALV. Io per ora inclino a creder l'istesso; né son lontano a credere che 'l medesimo avverrebbe a quel vastissimo navilio il quale, galleggiando in mare, non si dissolve per il peso e carico di tante merci ed armamenti, che in secco e circondato dall'aria forse si aprirebbe. Ma seguitiamo la nostra materia, e dimostriamo come:
Dato un prisma o cilindro col suo peso, ed il peso massimo sostenuto da esso, si possa trovare la massima lunghezza, oltre alla quale prolungato, dal solo suo proprio peso si romperebbe.
[v. figura 29]
Sia dato il prisma AC col suo proprio peso, e dato parimente il peso D, massimo da poter esser sostenuto dall'estremità C: bisogna trovare la lunghezza massima sino alla quale si possa allungare il detto prisma senza rompersi. Facciasi, come il peso del prisma AC al composto de i pesi AC col doppio del peso di D, così la lunghezza CA alla AH, tra le quali sia media proporzionale la AG: dico, AG esser la lunghezza cercata. Imperò che il momento gravante del peso D in C è eguale al momento del peso doppio di D che fusse posto nel mezo di AC, dove è anco il centro del momento del prisma AC; il momento dunque della resistenza del prisma AC, che sta in A, equivale al gravante del doppio del peso D col peso AC, attaccati però nel mezo di AC. E perché viene ad essersi fatto, come 'l momento di detti pesi così situati, cioè del doppio D con AC, al momento di AC, così la HA alla AC, tra le quali è media la AG, adunque il momento del doppio D col momento AC al momento AC è come il quadrato GA al quadrato AC: ma il momento premente del prisma GA al momento di AC è come il quadrato GA al quadrato AC: adunque la lunghezza AG è la massima che si cercava, cioè quella sino alla quale allungandosi il prisma AC si sosterrebbe, ma più oltre si spezzerebbe.
Sin qui si son considerati i momenti e le resistenze de i prismi e cilindri solidi, l'una estremità de i quali sia posta immobile, e solo nell'altra sia applicata la forza di un peso premente, considerandolo esso solo, o ver congiunto con la gravità del medesimo solido, o veramente la sola gravità dell'istesso solido: ora voglio che discorriamo alquanto de i medesimi prismi e cilindri quando fussero sostenuti da amendue l'estremità , o vero che sopra un sol punto, preso tra le estremità , fusser posati. E prima dico, che il cilindro che gravato dal proprio peso sarà ridotto alla massima lunghezza, oltre alla quale più non si sosterrebbe, o sia retto nel mezo da un solo sostegno o vero da due nelle estremità , potrà esser lungo il doppio di quello che sarebbe, fitto nel muro, cioè sostenuto in un sol termine. [v. figura 30] Il che per se stesso è assai manifesto perché se intenderemo, del cilindro che io segno ABC, la sua metà AB esser la somma lunghezza potente a sostenersi stando fissa nel termine B, nell'istesso modo si sosterrà se, posata sopra 'l sostegno G, sarà contrappesata dall'altra sua metà BC. E similmente, se del cilindro DEF la lunghezza sarà tale, che solamente la sua metà potesse sostenersi fissa nel termine D, ed in consequenza l'altra EF fissa nel termine F, è manifesto che posti i sostegni H, I sotto l'estremità D, F, ogni momento che si aggiunga di forza o di peso in E, quivi si farà la rottura.
Quello che ricerca più sottile specolazione è quando, astraendo dalla gravità di tali solidi, ci fusse proposto di dovere investigare se quella forza o peso che, applicato al mezo d'un cilindro sostenuto nelle estremità , basterebbe a romperlo, potrebbe far l'istesso effetto applicato in qualsivoglia altro luogo, più vicino all'una che all'altra estremità : come, per esempio, se volendo noi rompere una mazza, presola con le mani nell'estremità ed appuntato il ginocchio in mezo, l'istessa forza che basterebbe usare per romperla in tal modo, basterebbe ancora quando il ginocchio si puntasse non nel mezzo, ma più vicino all'un de gli estremi.
SAGR. Parmi che 'l problema sia toccato da Aristotele nelle sue Questioni Mecaniche.
SALV. Il quesito d'Aristotele non è precisamente l'istesso, perché ei non cerca altro, se non di render la ragione perché manco fatica si ricerchi a romperlo tenendo le mani nell'estremità del legno, cioè remote assai dal ginocchio, che se le tenessimo vicine: e ne rende una ragione generale, riducendo la causa alle leve più lunghe, quando s'allargano le braccia afferrando l'estremità . Il nostro quesito aggiugne qualche cosa di più, ricercando se, posto il ginocchio nel mezo o in altro luogo, tenendo pur le mani sempre nell'estremità , la medesima forza serva in tutti i siti.
SAGR. Nella prima apprensione parrebbe di sì, atteso che le due leve mantengono in certo modo il medesimo momento, mentre che, quanto si scorcia l'una, tanto s'allunga l'altra.
SALV. Or vedete quanto sono in pronto...
[Pagina successiva]