[Pagina precedente]...a. Supposto dall'Autore questo solo principio, passa alle proposizioni, dimostrativamente concludendole; delle quali la prima è questa:
[v. figura 43]
TEOREMA1. PROPOSIZIONE 1
Il tempo in cui uno spazio dato è percorso da un mobile con moto uniformemente accelerato a partire dalla quiete, è eguale al tempo in cui quel medesimo spazio sarebbe percorso dal medesimo mobile mosso di moto equabile, il cui grado di velocità sia sudduplo [la metà ] del grado di velocità ultimo e massimo [raggiunto dal mobile] nel precedente moto uniformemente accelerato.
TEOREMA 2. PROPOSIZIONE 2
Se un mobile scende, a partire dalla quiete, con moto uniformemente accelerato, gli spazi percorsi da esso in tempi qualsiasi stanno tra di loro in duplicata proporzione dei tempi [in un rapporto pari al rapporto dei tempi moltiplicato per se stesso], cioè stanno tra di loro come i quadrati dei tempi.
COROLLARIO 1
Di qui è manifesto che, se dal primo istante o inizio del moto avremo preso successivamente un numero qualsiasi di tempi eguali, come ad esempio AD, DE, EF, FG, nei quali siano percorsi gli spazi HL, LM, MN, NI, questi spazi staranno tra di loro come i numeri impari ab unitate, cioè come 1, 3, 5, 7: questa è infatti la proporzione tra gli eccessi dei quadrati delle linee che si eccedono egualmente e il cui eccesso è eguale alla minima di esse, o vogliam dire tra i numeri quadrati consecutivi ab unitate. Pertanto, mentre i gradi di velocità aumentano in tempi eguali secondo la serie dei numeri semplici, gli spazi percorsi nei medesimi tempi acquistano incrementi secondo la serie dei numeri impari ab unitate.
SAGR. Sospendete, in grazia, alquanto la lettura, mentre io vo ghiribizando intorno a certo concetto pur ora cascatomi in mente; per la spiegatura del quale, per mia e per vostra più chiara intelligenza, fo un poco di disegno. [v. figura 44] Dove mi figuro per la linea AI la continuazione del tempo dopo il primo instante in A; applicando poi in A, secondo qualsivoglia angolo, la retta AF, e congiugnendo i termini I, F, diviso il tempo AI in mezo in C, tiro la CB parallela alla IF; considerando poi la CB come grado massimo della velocità che, cominciando dalla quiete nel primo instante del tempo A, si andò augumentando secondo il crescimento delle parallele alla BC, prodotte nel triangolo ABC (che è il medesimo che crescere secondo che cresce il tempo), ammetto senza controversia, per i discorsi fatti sin qui, che lo spazio passato dal mobile cadente con la velocità accresciuta nel detto modo sarebbe eguale allo spazio che passerebbe il medesimo mobile quando si fusse nel medesimo tempo AC mosso di moto uniforme, il cui grado di velocità fusse eguale all'EC, metà del BC. Passo ora più oltre, e figuratomi, il mobile sceso con moto accelerato trovarsi nell'instante C avere il grado di velocità BC, è manifesto, che se egli continuasse di muoversi con l'istesso grado di velocità BC senza più accelerarsi, passerebbe nel seguente tempo CI spazio doppio di quello che ei passò nell'egual tempo AC col grado di velocità uniforme EC, metà del grado BC; ma perché il mobile scende con velocità accresciuta sempre uniformemente in tutti i tempi eguali, aggiugnerà al grado CB nel seguente tempo CI quei momenti medesimi di velocità crescente secondo le parallele del triangolo BFG, eguale al triangolo ABC: sì che, aggiunto al grado di velocità GI la metà del grado FG, massimo degli acquistati nel moto accelerato e regolati dalle parallele del triangolo BFG, aremo il grado di velocità IN, col quale di moto uniforme si sarebbe mosso nel tempo CI; il qual grado IN essendo triplo del grado EC, convince, lo spazio passato nel secondo tempo CI dovere esser triplo del passato nel primo tempo CA. E se noi intenderemo, esser aggiunta all'AI un'altra ugual parte di tempo IO, ed accresciuto il triangolo sino in APO, è manifesto, che quando si continuasse il moto per tutto 'l tempo IO col grado di velocità IF, acquistato nel moto accelerato nel tempo AI, essendo tal grado IF quadruplo dell'EC, lo spazio passato nel tempo IO sarebbe quadruplo del passato nell'egual primo tempo AC; ma continuando l'accrescimento dell'uniforme accelerazione nel triangolo FPQ simile a quello del triangolo ABC, che ridotto a moto equabile aggiugne il grado eguale all'EC, aggiunto il QR eguale all'EC, aremo tutta la velocità equabile esercitata nel tempo IO quintupla dell'equabile del primo tempo AC, e però lo spazio passato quintuplo del passato nel primo tempo AC. Vedesi dunque anco in questo semplice calcolo, gli spazii passati in tempi uguali dal mobile che, partendosi dalla quiete, va acquistando velocità conforme all'accrescimento del tempo, esser tra di loro come i numeri impari ab unitate 1, 3, 5, e, congiuntamente presi gli spazii passati, il passato nel doppio tempo esser quadruplo del passato nel sudduplo, il passato nel tempo triplo esser nonuplo, ed in somma gli spazii passati essere in duplicata proporzione de i tempi, cioè come i quadrati di essi tempi.
SIMP. Io veramente ho preso più gusto in questo semplice e chiaro discorso del Sig. Sagredo, che nella per me più oscura dimostrazione dell'Autore; sì che io resto assai ben capace che il negozio deva succeder così, posta e ricevuta la definizione del moto uniformemente accelerato. Ma se tale sia poi l'accelerazione della quale si serve la natura nel moto de i suoi gravi descendenti, io per ancora ne resto dubbioso; e però, per intelligenza mia e di altri simili a me, parmi che sarebbe stato opportuno in questo luogo arrecar qualche esperienza di quelle che si è detto esservene molte, che in diversi casi s'accordano con le conclusioni dimostrate.
SALV. Voi, da vero scienziato, fate una ben ragionevol domanda; e così si costuma e conviene nelle scienze le quali alle conclusioni naturali applicano le dimostrazioni matematiche, come si vede ne i perspettivi, negli astronomi, ne i mecanici, ne i musici ed altri, li quali con sensate esperienze confermano i principii loro, che sono i fondamenti di tutta la seguente struttura: e però non voglio che ci paia superfluo se con troppa lunghezza aremo discorso sopra questo primo e massimo fondamento, sopra 'l quale s'appoggia l'immensa machina d'infinite conclusioni, delle quali solamente una piccola parte ne abbiamo in questo libro, poste dall'Autore, il quale arà fatto assai ad aprir l'ingresso e la porta stata sin or serrata agl'ingegni specolativi. Circa dunque all'esperienze, non ha tralasciato l'Autor di farne; e per assicurarsi che l'accelerazione de i gravi naturalmente descendenti segua nella proporzione sopradetta, molte volte mi son ritrovato io a farne la prova nel seguente modo, in sua compagnia.
In un regolo, o voglià n dir corrente, di legno, lungo circa 12 braccia, e largo per un verso mezo bracio e per l'altro 3 dita, si era in questa minor larghezza incavato un canaletto, poco più largo d'un dito; tiratolo drittissimo, e, per averlo ben pulito e liscio, incollatovi dentro una carta pecora zannata e lustrata al possibile, si faceva in esso scendere una palla di bronzo durissimo, ben rotondata e pulita; costituito che si era il detto regolo pendente, elevando sopra il piano orizontale una delle sue estremità un braccio o due ad arbitrio, si lasciava (come dico) scendere per il detto canale la palla, notando, nel modo che appresso dirò, il tempo che consumava nello scorrerlo tutto, replicando il medesimo atto molte volte per assicurarsi bene della quantità del tempo, nel quale non si trovava mai differenza né anco della decima parte d'una battuta di polso. Fatta e stabilita precisamente tale operazione, facemmo scender la medesima palla solamente per la quarta parte della lunghezza di esso canale; e misurato il tempo della sua scesa, si trovava sempre puntualissimamente esser la metà dell'altro: e facendo poi l'esperienze di altre parti, esaminando ora il tempo di tutta la lunghezza col tempo della metà , o con quello delli duo terzi o de i 3/4, o in conclusione con qualunque altra divisione, per esperienze ben cento volte replicate sempre s'incontrava, gli spazii passati esser tra di loro come i quadrati e i tempi, e questo in tutte le inclinazioni del piano, cioè del canale nel quale si faceva scender la palla; dove osservammo ancora, i tempi delle scese per diverse inclinazioni mantener esquisitamente tra di loro quella proporzione che più a basso troveremo essergli assegnata e dimostrata dall'Autore. Quanto poi alla misura del tempo, si teneva una gran secchia piena d'acqua, attaccata in alto, la quale per un sottil cannellino, saldatogli nel fondo, versava un sottil filo d'acqua, che s'andava ricevendo con un piccol bicchiero per tutto 'l tempo che la palla scendeva nel canale e nelle sue parti: le particelle poi dell'acqua, in tal guisa raccolte, s'andavano di volta in volta con esattissima bilancia pesando, dandoci le differenze e proporzioni de i pesi loro le differenze e proporzioni de i tempi; e questo con tal giustezza, che, come ho detto, tali operazioni, molte e molte volte replicate, già mai non differivano d'un notabil momento.
SIMP. Gran sodisfazione arei ricevuta nel trovarmi presente a tali esperienze: ma sendo certo della vostra diligenza nel farle e fedeltà nel referirle, mi quieto, e le ammetto per sicurissime e vere.
SALV. Potremo dunque ripigliar la nostra lettura, e seguitare avanti.
COROLLARIO 2
In secondo luogo si ricava che, se si prendono, a partire dall'inizio del moto, due spazi qualsiasi percorsi in tempi qualsiasi, i rispettivi tempi staranno tra di loro come uno dei due spazi sta al medio proporzionale tra i due spazi dati.
SCOLIO
Ora, quanto si è dimostrato riguardo ai moti verticali, si intenda verificarsi similmente anche nei moti sopra piani comunque inclinati: si è infatti assunto che, in questi ultimi, il grado di accelerazione aumenti sempre secondo la medesima proporzione, ossia secondo l'incremento del tempo, o vogliam dire secondo la prima serie semplice dei numeri.
Salv.(1) Qui vorrei, Sig. Sagredo, che a me ancora fosse permesso, se ben forsi con troppo tedio del Sig. Simplicio, il differir per un poco la presente lettura, fin ch'io possa esplicare quanto dal detto e dimostrato fin ora, e congiuntamente dalla notizia d'alcune conclusioni mecaniche apprese già dal nostro Academico, sovviemmi adesso di poter soggiugnere per maggior confermazione della verità del principio che sopra con probabili discorsi ed esperienze fu da noi esaminato, anzi, quello più importa, per geometricamente concluderlo, dimostrando prima un sol lemma, elementare nella contemplazione de gl'impeti.
SAGR. Mentre tale deva esser l'acquisto quale V. S. ci promette, non vi è tempo che da me volentierissimo non si spendesse, trattandosi di confermare e interamente stabilire queste scienze del moto: e quanto a me, non solo vi concedo il poter satisfarvi in questo particolare, ma di più pregovi ad appagare quanto prima la curiosità che mi avete in esso svegliata; e credo che il Sig. Simplicio abbia ancora il medesimo sentimento.
SIMP. Non posso dire altrimenti.
SALV. Già che dunque me ne date licenza, considerisi in primo luogo, come effetto notissimo, che i momenti o le velocità d'un istesso mobile son diverse sopra diverse inclinazioni di piani, e che la massima è per la linea perpendicolarmente sopra l'orizonte elevata, e che per l'altre inclinate si diminuisce tal velocità , secondo che quelle più dal perpendicolo si discostano, cioè più obliquamente s'inclinano; onde l'impeto, il talento, l'energia, o vogliamo dire il momento, del descendere vien diminuito nel mobile dal piano soggetto, sopra il quale esso mobile s'appoggia e descende.
[v. figura 45]
E per meglio dichiararmi, intendasi la linea AB, perpendicolarmente eretta sopra l'orizonte AC; pongasi poi la medesima in diverse inclinazioni verso l'orizonte piegata, come in AD, AE, AF, etc.: dico, l'impeto massimo e totale del grave per descendere esser per la perpendicolare BA, minor di questo per la DA, e minore ancora per...
[Pagina successiva]