[Pagina precedente]...a secondo la curvità della linea parabolica FNB: dico, tal solido esser per tutto egualmente resistente. Sia segato dal piano CO, parallelo all'AD, e intendansi due leve divise e posate sopra i sostegni A, C, e siano dell'una le distanze BA, AF, e dell'altra le BC, CN. E perché nella parabola FBA la AB alla BC sta come il quadrato della FA al quadrato di CN, è manifesto, la distanza BA dell'una leva alla distanza BC dell'altra aver doppia proporzione di quella che ha l'altra distanza AF all'altra CN: e perché la resistenza da pareggiarsi con la leva BA alla resistenza da pareggiarsi con la leva BC ha la medesima proporzione che 'l rettangolo DA al rettangolo OC, la quale è la medesima che ha la linea AF alla NC, che sono l'altre due distanze delle leve, è manifesto, per il lemma passato, che la medesima forza che sendo applicata alla linea BG pareggerà la resistenza DA, pareggerà ancora la resistenza CO. Ed il medesimo si dimostrerà segandosi il solido in qual si sia altro luogo: adunque tal solido parabolico è per tutto egualmente resistente. Che poi, segandosi il prisma secondo la linea parabolica FNB, se ne levi la terza parte, si fa manifesto: perché la semiparabola FNBA e 'l rettangolo FB son basi di due solidi compresi tra due piani paralleli, cioè tra i rettangoli FB, DG, per lo che ritengono tra di loro la medesima proporzione che esse lor basi; ma il rettangolo FB è sesquialtero della semiparabola FNBA; adunque, segando il prisma secondo la linea parabolica, se ne leva la terza parte. Di qui si vede come con diminuzion di peso di più di trentatré per cento si posson far i travamenti, senza diminuir punto la loro gagliardia; il che ne i navilii grandi, in particolare per regger le coverte, può esser d'utile non piccolo, atteso che in cotali fabbriche la leggerezza importa infinitamente.
SAGR. Le utilità son tante, che lungo o impossibil sarebbe il registrarle tutte: ma io, lasciate queste da banda, arei più gusto d'intender che l'alleggerimento si faccia secondo le proporzioni assegnate. Che il taglio secondo la diagonale levi la metà del peso, l'intendo benissimo; ma che l'altro, secondo la parabolica, porti via la terza parte del prisma, posso crederlo al Sig. Salviati, sempre veridico, ma in ciò più della fede mi sarebbe grata la scienza.
SALV. Vorreste dunque aver la dimostrazione, come sia vero che l'eccesso del prisma sopra questo che per ora chiamiamo solido parabolico, sia la terza parte di tutto il prisma. So d'averlo altra volta dimostrato; tenterò ora se potrò rimetter insieme la dimostrazione, per la quale intanto mi sovvien che mi servivo di certo lemma d'Archimede, posto da esso nel libro delle Spirali: ed è, che se quante linee si vogliono si eccederanno egualmente, e l'eccesso sia eguale alla minima di quelle, ed altrettante siano ciascheduna eguale alla massima, i quadrati di tutte queste saranno meno che tripli de i quadrati di quelle che si eccedono; ma i medesimi saranno ben più che tripli di quelli altri che restano, trattone il quadrato della massima. [v. figura 37] Posto questo, sia in questo rettangolo ACBP inscritta la linea parabolica AB: doviamo provare, il triangolo misto BAP, i cui lati sono BP, PA e base la linea parabolica BA, esser la terza parte di tutto 'l rettangolo CP. Imperò che, se non è tale, sarà o più che la terza parte o meno. Sia, se esser può, meno, ed a quello che gli manca intendasi esser eguale lo spazio X. Dividendo poi il rettangolo CP continuamente in parti eguali con linee parallele a i lati BP, CA arriveremo finalmente a parti tali, ch'una di loro sarà minore dello spazio X: or sia una di quelle il rettangolo OB, e per i punti dove l'altre parallele segano la linea parabolica, facciansi passare le parallele alla AP; e qui intenderò circoscritta intorno al nostro triangolo misto una figura composta di rettangoli, che sono BO, IN, HM, FL, EK, GA, la qual figura sarà pur ancora meno che la terza parte del rettangolo CP, essendo che l'eccesso di essa figura sopra 'l triangolo misto è manco assai del rettangolo BO, il quale è ancor minore dello spazio X.
SAGR. Piano, di grazia, ch'io non vedo come l'eccesso di questa figura circoscritta sopra 'l triangolo misto sia manco assai del rettangolo BO.
SALV. Il rettangolo BO non è egli eguale a tutti questi rettangoletti per i quali passa la nostra linea parabolica? dico di questi BI, IH, HF, FE, EG, GA, de i quali una parte sola resta fuori del triangolo misto? ed il rettangolo BO non si è egli posto ancor minore nello spazio X? Adunque, se il triangolo insieme con l'X pareggiava, per l'avversario, la terza parte del rettangolo CP, la figura circoscritta, che al triangolo aggiugne tanto meno che lo spazio X, resterà pur ancora minore della terza parte del rettangolo medesimo CP: ma questo non può essere, perché ella è più della terza parte: adunque non è vero che il nostro triangolo misto sia manco del terzo del rettangolo.
SAGR. Ho intesa la soluzione del mio dubbio. Ma bisogna ora provarci che la figura circoscritta sia più della terza parte del rettangolo CP, dove credo che aremo assai più da fare.
SALV. Eh non ci è gran difficoltà . Imperò che nella parabola il quadrato della linea DE al quadrato della ZG ha la medesima proporzione che la linea DA alla AZ, che è quella che ha il rettangolo KE al rettangolo AG (per esser l'altezze AK, KL eguali); adunque la proporzione che ha il quadrato ED al quadrato ZG, cioè il quadrato LA al quadrato AK, l'ha ancora il rettangolo KE al rettangolo KZ. E nel medesimo modo appunto si proverà de gli altri rettangoli LF, MH, NI, OB star tra di loro come i quadrati delle linee MA, NA, OA, PA. Consideriamo adesso come la figura circoscritta è composta di alcuni spazii che tra di loro stanno come i quadrati di linee che si eccedono con eccessi eguali alla minima, e come il rettangolo CP è composto di altrettanti spazii ciascuno eguale al massimo, che sono tutti i rettangoli eguali all'OB; adunque, per il lemma d'Archimede, la figura circoscritta è più della terza parte del rettangolo CP: ma era anche minore, il che è impossibile: adunque il triangolo misto non è manco del terzo del rettangolo CP. Dico parimente che non è più. Imperò che, se è più del terzo del rettangolo CP, intendasi lo spazio X eguale all'eccesso del triangolo sopra la terza parte di esso rettangolo CP; e fatta la divisione e suddivisione del rettangolo in rettangoli sempre eguali, si arriverà a tale che uno di quelli sia minore dello spazio X. Sia fatta, e sia il rettangolo BO minore dell'X; e descritta come sopra la figura, avremo nel triangolo misto inscritta una figura composta de i rettangoli VO, TN, SM, RL, QK, la quale non sarà ancora minore della terza parte del gran rettangolo CP. Imperò che il triangolo misto supera di manco assai la figura inscritta di quello che egli superi la terza parte di esso rettangolo CP, atteso che l'eccesso del triangolo sopra la terza parte del rettangolo CP è eguale allo spazio X, il quale è minore del rettangolo BO, e questo è anco minore assai dell'eccesso del triangolo sopra la figura inscrittagli; imperò che ad esso rettangolo BO sono eguali tutti i rettangoletti AG, GE, EF, FH, HI, IB, de i quali son ancora manco che la metà gli avanzi del triangolo sopra la figura inscritta. E però, avanzando il triangolo la terza parte del rettangolo CP di più assai (avanzandolo dello spazio X) che ei non avanza la sua figura inscritta, sarà tal figura ancora maggiore della terza parte del rettangolo CP: ma ella è minore, per il lemma supposto; imperò che il rettangolo CP, come aggregato di tutti i rettangoli massimi, a i rettangoli componenti la figura inscritta ha la medesima proporzione che l'aggregato di tutti i quadrati delle linee eguali alla massima a i quadrati delle linee che si eccedono egualmente, trattone il quadrato della massima; e però (come de i quadrati accade) tutto l'aggregato de i massimi (che è il rettangolo CP) è più che triplo dell'aggregato de gli eccedentisi, trattone il massimo, che compongono la figura inscritta. Adunque il triangolo misto non è né maggiore né minore della terza parte del rettangolo CP; è dunque eguale.
SAGR. Bella e ingegnosa dimostrazione, e tanto più, quanto ella ci dà la quadratura della parabola, mostrandola essere sesquiterza del triangolo inscrittogli, provando quello che Archimede con due tra di loro diversissimi, ma amendue ammirabili, progressi di molte proposizioni dimostrò; come anco fu dimostrata ultimamente da Luca Valerio, altro Archimede secondo dell'età nostra, la qual dimostrazione è registrata nel libro che egli scrisse del centro della gravità de i solidi.
SALV. Libro veramente da non esser posposto a qual si sia scritto da i più famosi geometri del presente e di tutti i secoli passati; il quale quando fu veduto dall'Accademico nostro, lo fece desistere dal proseguire i suoi trovati, che egli andava continuando di scrivere sopra 'l medesimo suggetto, già che vedde il tutto tanto felicemente ritrovato e dimostrato dal detto Sig. Valerio.
SAGR. Io ero informato di tutto questo accidente dall'istesso Accademico: e l'avevo anco ricercato che mi lasciasse una volta vedere le sue dimostrazioni sin allora ritrovate quando ei s'incontrò nel libro del Sig. Valerio, ma non mi successe poi il vederle.
SALV. Io ne ho copia, e le mostrerò a V. S., che averà gusto di vedere la diversità de i metodi con i quali camminano questi due autori per l'investigazione delle medesime conclusioni e loro dimostrazioni; dove anco alcune delle conclusioni hanno differente esplicazione, benché in effetto egualmente vere.
SAGR. Mi sarà molto caro il vederle, e V. S., quando ritorni a i soliti congressi, mi farà grazia di portarle seco. Ma intanto, essendo questa, della resistenza del solido cavato dal prisma col taglio parabolico, operazione non men bella che utile in molte opere mecaniche, buona cosa sarebbe per gli artefici l'aver qualche regola facile e spedita per potere sopra 'l piano del prisma segnare essa linea parabolica.
SALV. Modi di disegnar tali linee ce ne son molti, ma due sopra tutti gli altri speditissimi glie ne dirò io: uno de i quali è veramente maraviglioso, poiché con esso, in manco tempo che col compasso altri disegnerà sottilmente sopra una carta quattro o sei cerchi di differenti grandezze, io posso disegnare trenta e quaranta linee paraboliche, non men giuste sottili e pulite delle circonferenze di essi cerchi. Io ho una palla di bronzo esquisitamente rotonda, non più grande d'una noce; questa, tirata sopra uno specchio di metallo, tenuto non eretto all'orizonte, ma alquanto inchinato, sì che la palla nel moto vi possa camminar sopra, calcandolo leggiermente nel muoversi, lascia una linea parabolica sottilissimamente e pulitissimamente descritta, e più larga e più stretta secondo che la proiezzione si sarà più o meno elevata. Dove anco abbiamo chiara e sensata esperienza, il moto de i proietti farsi per linee paraboliche: effetto non osservato prima che dal nostro amico, il quale ne arreca anco la dimostrazione nel suo libro del moto, che vedremo insieme nel primo congresso. La palla poi, per descrivere al modo detto le parabole, bisogna, con maneggiarla alquanto con la mano, scaldarla ed alquanto inumidirla, ché così lascerà più apparenti sopra lo specchio i suoi vestigii. L'altro modo, per disegnar la linea, che cerchiamo, sopra il prisma, procede così. Ferminsi ad alto due chiodi in un parete, equidistanti all'orizonte e tra di loro lontani il doppio della larghezza del rettangolo su 'l quale vogliamo notare la semiparabola, e da questi due chiodi penda una catenella sottile, e tanto lunga che la sua sacca si stenda quanta è la lunghezza del prisma: questa catenella si piega in figura parabolica, sì che andando punteggiando sopra 'l muro la strada che vi fa essa catenella, aremo descritta un'intera parabola, la quale con un perpendicolo, che penda dal mezo di quei due chiodi, si dividerà in parti eguali. Il trasferir poi tal linea sopra le faccie opposte del prisma non h...
[Pagina successiva]