[Pagina precedente]...o. Questa proporzione sia quella che or ha ad rx. Pertanto x andrà a cadere o al di fuori del conoide, o al di dentro, oppure sulla base stessa. Sia [l'ipotesi] che esso cada al di fuori, sia [quella] che esso cada sulla base, risultano già manifestamente assurde. [Supponiamo che] vada a cadere all'interno: poiché xr sta ad ro, come la figura inscritta sta all'eccesso, per il quale essa è superata dal conoide, poniamo che, quale è la proporzione di br ad ro, tale sia anche quella che la figura inscritta ha rispetto al solido k, il quale dovrà essere necessariamente minore del suddetto eccesso; si inscriva poi un'altra figura, la quale sia superata dal conoide per un eccesso minore di k: il suo centro di gravità cadrà tra o e c. Sia esso u: poiché la prima figura sta a k come br sta ad ro, e poiché, d'altra parte, la seconda figura, il cui centro é u, è maggiore della prima ed è superata dal conoide per un eccesso minore di k, si avrà allora che, quale è la proporzione che la seconda figura ha rispetto all'eccesso, per il quale essa è superata dal conoide, tale è anche la proporzione che una linea maggiore della br ha rispetto alla linea ru. Ma il centro di gravità del conoide è r, mentre quello della figura inscritta è u: dunque, il centro di gravità delle rimanenti porzioni si troverà al di fuori del conoide, al di sotto di b; il che è impossibile. E col medesimo procedimento si dimostrerà che il centro di gravità del medesimo conoide non si trova sulla linea ca. Che poi esso non sia né l'uno né l'altro dei due punti c e o, ciò è manifesto. Infatti, qualora supponessimo ciò, descritte [due] altre figure, tali che quella inscritta sia maggiore della figura il cui centro è o, e quella circoscritta sia minore della figura il cui centro è c, il centro di gravità del conoide andrebbe a cadere fuori del centro di gravità di tali figure: il che è impossibile, come abbiamo testé concluso. Ne consegue, dunque, che esso si trova compreso tra il centro della figura circoscritta e quello della figura inscritta. Se è così, dovrà trovarsi necessariamente in quel punto che divide l'asse in modo che la parte verso il vertice sia doppia della rimanente. Infatti, poiché si possono inscrivere e circoscrivere figure tali, che le linee comprese tra il loro centro di gravità e il punto suddetto siano minori di qualunque linea data, chi affermasse cosa diversa verrebbe condotto a questo assurdo: che, cioè, il centro del conoide non si trovi tra i centri della figura inscritta e di quella circoscritta.
Se vi sono tre linee proporzionali, e si prende un'altra linea qualsiasi, tale che la proporzione che essa ha rispetto ai due terzi dell'eccesso, per il quale la massima supera la media, sia eguale alla proporzione che la minima ha rispetto all'eccesso, per il quale la massima supera la minima; se inoltre si prende ancora un'altra linea tale, che la proporzione che essa ha rispetto all'eccesso, per il quale la massima supera la media, sia eguale alla proporzione che la linea, composta dalla massima e dal doppio della media, ha rispetto alla linea composta dal triplo della massima e della media; [la somma di] ambedue le linee prese insieme sarà [eguale al] la terza parte della massima tra le linee proporzionali.
[v. figura 88]
Siano tre linee proporzionali ab, bc, bf: e quale è la proporzione che bf ha ad af, tale sia anche quella che ms ha rispetto ai due terzi della ca; inoltre, quale è la proporzione che la linea composta da ab e dal doppio di bc ha rispetto alla linea composta dal triplo di ambedue le ab e bc, tale sia anche la proporzione che un'altra linea, cioè sn, ha ad ac. Bisogna dimostrare che mn è la terza parte della ab. Pertanto, poiché ab, bc, bf sono proporzionali, anche ac e cf si troveranno nel medesimo rapporto: perciò, come ab sta a bc, così ac sta cf; e come il triplo di ab al triplo di bc, così ac a cf. Pertanto, quale è la proporzione che [la somma del] triplo di ab col triplo di bc ha rispetto al triplo di cb, tale sarà anche la proporzione che ac ha a una linea minore della cf. Sia essa co. Perciò, componendo e per conversione della proporzione [invertendo], oa avrà ad ac la medesima proporzione che [la somma del] triplo di ab col sestuplo di bc ha rispetto al [la somma del] triplo di ab col triplo di bc: ma ac ha ad sn la medesima proporzione che [la somma del] triplo di ab col triplo di bc ha rispetto al [la somma di] ab col doppio di bc: ex aequali, dunque, oa avrà ad ns la medesima proporzione che [la somma del] triplo di ab col sestuplo di bc ha rispetto al [la somma di] ab col doppio di bc. Ora, [la somma del] triplo di ab col sestuplo di bc è eguale a tre volte [la somma di] ab col doppio di bc: dunque, ao è tripla di sn.
Inoltre, poiché oc sta a ca come il triplo di cb sta alla somma del triplo di ab col triplo di cb; e poiché come ca sta a cf, così il triplo di ab al triplo di bc; dunque, ex aequali, in proporzione perturbata, si avrà che, come oc sta a cf, così il triplo di ab sta alla somma del triplo di ab col triplo di bc, e, per conversione della proporzione, come of sta ad fc, così il triplo di bc sta alla somma del triplo di ab col triplo di bc. Ma come cf sta ad fb, così ac sta a cb, e il triplo di ac al triplo di bc; ex aequali, dunque, in proporzione perturbata, si avrà che, come of sta ad fb, così il triplo di ac sta al triplo di ambedue le ab e bc insieme. Pertanto [componendo] l'intera ob starà alla bf come il sestuplo di ab sta al triplo di ambedue le ab e bc; e poiché fc e ca stanno tra di loro nella medesima proporzione che cb e ba, si avrà che, come fc sta a ca, così bc sta a ba, e, componendo, come fa sta ad ac, così [la somma di] ambedue le ba e bc sta a ba, e così il triplo sta al triplo: dunque, come fa sta ad ac, così la linea composta dal triplo di ba e dal triplo di bc sta al triplo di ab; perciò come fa sta ai due terzi della ac, così la linea composta dal triplo di ba e dal triplo di bc sta ai due terzi del triplo di ba, cioè al doppio di ba. Ma come fa sta ai due terzi della ac, così fb sta ad ms; dunque, come fb sta ad ms, così la linea composta dal triplo di ba e dal triplo di bc sta al doppio di ba. Ma come ob sta ad fb, così il sestuplo di ab stava al triplo di ambedue le ab e bc: dunque, ex aequali, ob avrà ad ms la medesima proporzione che il sestuplo di ab al doppio di ba; perciò ms sarà la terza parte della ob. Si è anche dimostrato che sn è la terza parte di ao: risulta dunque che mn è, similmente, la terza parte di ab. E ciò è quello che si doveva dimostrare.
Il centro di gravità di un qualsiasi frusto [tronco] staccato da un conoide parabolico si trova sulla linea retta che è l'asse del frusto; diviso tale asse in tre parti eguali, il centro di gravità si trova nella parte di mezzo e la divide in modo che la parte verso la base minore avrà rispetto alla parte verso la base maggiore, la medesima proporzione che la base maggiore ha rispetto alla base minore.
[v. figura 89]
Dal conoide, il cui asse è rb, sia staccato il solido, il cui asse è be, e il piano secante [con cui è operata tale scissione] sia equidistante dalla base; si faccia inoltre una sezione per mezzo di un altro piano passante per l'asse perpendicolare alla base: tale sezione della parabola [sezione del conoide, la quale genera una parabola] sia urc; inoltre le intersezioni di quest'ultimo piano col piano secante e con la base siano [rispettivamente] le linee rette lm ed uc: rb sarà il diametro di proporzione, o sarà equidistante dal diametro; lm e uc saranno ordinatamente applicate ad esso. Si divida, pertanto, eb in tre parti eguali, tra le quali la parte media sia qy; ora quest'ultima sia divisa dal punto i in modo che, quale è la proporzione della base, il cui diametro è uc, alla base, il cui diametro è lm, cioè del quadrato di uc al quadrato di lm, tale sia anche la proporzione di qi a iy. Bisogna dimostrare che i è il centro di gravità del frusto lmc. Si ponga a parte la linea ns eguale alla br, e sx sia eguale ad er; inoltre si prenda sg terza proporzionale delle linee ns ed sx; infine, quale è la proporzione che ng ha a gs, tale sia anche quella che la linea bq ha rispetto a io. Non importa che il punto o si trovi sopra o sotto la lm. Poiché nella sezione urc le linee lm e uc sono ordinatamente applicate, si avrà che, come il quadrato di uc sta al quadrato di lm, così la linea br sta alla linea re: ma come il quadrato uc sta al quadrato lm, così qi sta a iy, e come br sta ad re, così ns ad sx; dunque, qi sta a iy come ns ad sx. Perciò, come qy sta a yi, così [la somma di] ambedue le ns ed sx starà ad sx, e come eb sta a yi, così la linea composta dal triplo di ns e dal triplo di sx starà ad sx: ma come eb sta a by, così la linea composta dal triplo di ambedue le ns ed sx insieme sta alla linea composta da ns ed sx: dunque, come eb sta a bi, così la linea composta dal triplo di ns e dal triplo di sx sta alla linea composta da ns e dal doppio di sx. Le tre linee ns, sx, gs sono dunque proporzionali; e quale è la proporzione che sg ha a gn, tale è anche la proporzione che la linea presa oi ha rispetto ai due terzi della eb, cioè della nx; inoltre, quale è la proporzione che la linea composta da ns e dal doppio di sx, ha rispetto alla linea composta dal triplo di ns e dal triplo di sx, tale è anche la proporzione che l'altra linea presa ib ha rispetto a be, cioè rispetto a nx. Pertanto, per le cose che si sono sopra dimostrate, queste linee, prese insieme, saranno la terza parte della ns, cioè della rb; rb è dunque tripla della bo: perciò o sarà il centro di gravità del conoide urc. Sia poi a il centro di gravità del conoide lrm; dunque, il centro di gravità del frusto ulmc si trova sulla linea ob, e precisamente in quel punto che la delimita in modo che, quale è la proporzione che il frusto ulmc ha rispetto alla porzione lrm, tale sia anche la proporzione che la linea ao ha rispetto alla linea compresa tra o e il punto suddetto. E poiché ro è due terzi della rb, ed ra i due terzi della re; la rimanente ao sarà i due terzi della rimanente eb. E poiché abbiamo che, come il frusto ulmc sta alla porzione lrm, così ng sta a gs; e che, come ng sta a gs, così i due terzi di eb stanno a oi; e poiché, d'altra parte, ai due terzi di eb è eguale la linea ao; si avrà allora che, come il frusto ulmc sta alla porzione lrm, così ao sta a oi. Risulta, dunque, che il centro di gravità del frusto ulmc è il punto i, e che esso divide l'asse in modo che la parte verso la base minore sta alla parte verso la base maggiore come [la somma del] doppio della base maggiore con la base minore sta al [la somma del] doppio della minore con la maggiore. Il che è ciò che ci eravamo proposti, spiegato più elegantemente.
Se un numero qualsiasi di grandezze sono disposte tra loro [in rapporto tale] che la seconda sia superiore alla prima del doppio della prima, la terza sia superiore alla seconda del triplo della prima, la quarta sia superiore alla terza del quadruplo della prima, e così ciascuna delle grandezze che si susseguono sia superiore a quella immediatamente precedente di una grandezza multipla della prima secondo il numero [corrispondente alla posizione] che essa stessa occupa nell'ordine; se - dico - queste grandezze vengono ordinatamente appese ad eguali distanze su una bilancia, il centro di equilibrio del composto di tutte [le grandezze] dividerà la bilancia in modo che la parte verso le grandezze minori sarà tripla dell'altra [parte].
[v. figura 90]
Sia la bilancia LT; ad essa siano appese delle grandezze, tali quali abbiamo detto, e siano A, F, G, H, K, la prima delle quali sia A, appesa in T. Dico che il centro di equilibrio interseca la bilancia TL in modo che la parte verso T è tripla dell'altra. Sia TL tripla di LI, SL tripla di LP, QL lo sia di LN, ed LP di LO: IP, PN, NO, OL risulteranno eguali. Si prenda in F una grandezza doppia di A, in G se ne prenda un'altra tripla della medesima, in H una quadrupla, e così via; le grandezze, che abbiamo prese, siano que...
[Pagina successiva]