[Pagina precedente]...], intendete per ora, questa linea ab, passando sopra i due punti fissi e stabili a, b, aver nelle estremità sue pendenti, come vedete, due immensi pesi c, d, li quali, tirandola con grandissima forza, la facciano star veramente tesa dirittamente, essendo essa una semplice linea, senza veruna gravità . Or qui vi soggiungo e dico, che se dal mezzo di quella, che sia il punto e, voi sospenderete qualsivoglia piccolo peso, quale sia questo h, la linea ab cederà , ed inclinandosi verso il punto f, ed in consequenza allungandosi, costringerà i due gravissimi pesi c, d a salir in alto: il che in tal guisa vi dimostro. Intorno a i due punti a, b, come centri, descrivo 2 quadranti, eig, elm; ed essendo che li due semidiametri ai, bl sono eguali alli due ae, eb, gli avanzi fi, fl saranno le quantità de gli allungamenti delle parti af, fb sopra le ae, eb, ed in conseguenza determinano le salite de i pesi c, d, tutta volta però che il peso h avesse auto facoltà di calare in f: il che allora potrebbe seguire, quando la linea ef, che è la quantità della scesa di esso peso h, avesse maggior proporzione alla linea fi, che determina la salita de i due pesi c, d che non ha la gravità di amendue essi pesi alla gravità del peso h. Ma questo necessariamente avverrà , sia pur quanto si voglia massima la gravità de i pesi c, d, e minima quella dell'h: imperò che non è sì grande l'eccesso de i pesi c, d sopra 'l peso h, che maggiore non possa essere a proporzione l'eccesso della tangente ef sopra la parte della segante fi. Il che proveremo così. Sia il cerchio, il cui diametro gai: e qual proporzione ha la gravità de i pesi c, d alla gravità di h, tale la abbia la linea bo ad un'altra, che sia c, della quale sia minore la d, sì che maggior proporzione arà la bo alla d che alla c. Prendasi delle due ob, d la terza proporzionale be, e come oe ad eb, così si faccia il diametro gi (prolungandolo) all'if, e dal termine f tirisi la tangente fn; e perché si è fatto, come oe ad eb, così gi ad if, sarà , componendo, come ob a be, così gf ad fi: ma tra ob e be media la d, e tra gf, fi media la nf: adunque nf alla fi ha la medesima proporzione che la ob alla d, la qual proporzione è maggiore di quella de i pesi c, d al peso h. Avendo dunque maggior proporzione la scesa o velocità del peso h alla salita o velocità dei pesi c, d, che non ha la gravità di essi pesi c, d alla gravità del peso h; resta manifesto che il peso h descenderà , cioè la linea ab partirà dalla rettitudine orizontale. E quel che avviene alla retta ab priva di gravità , mentre si attacchi in e qualsivoglia minimo peso h, avviene all'istessa corda ab intesa di materia pesante, senza l'aggiunta di alcun altro grave; poiché vi si sospende il peso istesso della materia componente essa corda ab.
SIMP. Io resto satisfatto a pieno: però potrà il Sig. Salviati, conforme alla promessa, esplicarci qual sia l'utilità che da simile catenella si può ritrarre, e, dopo questo, arrecarci quelle specolazioni che dal nostro Accademico sono state fatte intorno alla forza della percossa.
SALV. Assai per questo giorno ci siamo occupati nelle contemplazioni passate: l'ora, che non poco è tarda, non ci basterebbe a gran segno per disbrigarci dalle nominate materie; però differiremo il congresso ad altro tempo più opportuno.
SAGR. Concorro col parere di V. S., perché da diversi ragionamenti auti con amici intrinseci del nostro Accademico ho ritratto, questa materia della forza della percossa essere oscurissima, né di quella sin ora esserne, da chiunque ne ha trattato, penetrato i suoi ricetti, pieni di tenebre ed alieni in tutto e per tutto dalle prime immaginazioni umane; e tra le conclusioni sentite profferire me ne resta in fantasia una stravagantissima, cioè che la forza della percossa è interminata, per non dir infinita. Aspetteremo dunque la commodità del Sig. Salviati. Ma intanto dicami che materie sono queste, che si veggono scritte dopo il trattato de i proietti.
SALV. Queste sono alcune proposizioni attenenti al centro di gravità de i solidi, le quali in sua gioventù andò ritrovando il nostro Accademico, parendogli che quello che in tal maniera aveva scritto Federigo Comandino non mancasse di qualche imperfezzione. Credette dunque con queste proposizioni, che qui vedete scritte, poter supplire a quello che si desiderava nel libro del Comandino; ed applicossi a questa contemplazione ad instanza dell'Illustrissimo Sig. Marchese Guid'Ubaldo Dal Monte, grandissimo matematico de' suoi tempi, come le diverse sue opere publicate ne mostrano, ed a quel Signore ne dette copia, con pensiero di andar seguitando cotal materia anco ne gli altri solidi non tocchi dal Comandino; ma incontratosi, dopo alcun tempo, nel libro del Sig. Luca Valerio, massimo geometra, e veduto come egli risolve tutta questa materia senza niente lasciar in dietro, non seguitò più avanti, ben che le aggressioni sue siano per strade molto diverse da quelle del Sig. Valerio.
SAGR. Sarà bene dunque che in questo tempo che s'intermette tra i nostri passati ed i futuri congressi, V. S. mi lasci nelle mani il libro, che io tra tanto anderò vedendo e studiando le proposizioni conseguentemente scrittevi.
SALV. Molto volentieri eseguisco la vostra domanda, e spero che V. S. prenderà gusto di tali proposizioni.
[APPENDICE
CONTENENTE I TEOREMI, E LE RELATIVE DIMOSTRAZIONI, INTORNO AL CENTRO DI GRAVITÀ DEI SOLIDI, QUALI FURONO SCRITTI UN TEMPO DAL MEDESIMO AUTORE]
POSTULATO
Dati dei pesi eguali similmente disposti in bilance diverse, postuliamo che, se il centro di gravità del composto degli uni divide la [relativa] bilancia secondo una certa proporzione, anche il centro di gravità del composto degli altri divide la [rispettiva] bilancia secondo la medesima proporzione.
LEMMA
[v. figura 82]
La linea ab sia intersecata a metà in c, e la metà ac sia divisa in e; sì che, qual è la proporzione che be ha ad ea, tale sia quella che ae ha ad ec. Dico, che la be è doppia della stessa ea. Infatti, poiché, come be sta ad ea, così ea sta ad ec, componendo e permutando, avremo che, come ba sta ad ac, così ae sta ad ec; ma come ae sta ad ec, cioè come ba ad ac, così be sta ad ea: perciò be è doppia della stessa ea.
Ciò posto, si dimostra che: Se un numero qualsiasi di grandezze, che si eccedono egualmente e i cui eccessi sono eguali alla minima di esse, vengono disposte su una bilancia in modo che pendano a distanze eguali, il centro di gravità di tutte [le grandezze] divide la bilancia in modo tale che la parte verso le [grandezze] minori è doppia dell'altra.
[v. figura 83]
Pertanto, sulla bilancia ab, a distanze eguali, pendano, in numero qualsiasi, le grandezze f, g, h, k, n, le quali siano come si è detto; e la minima di esse sia n; inoltre siano a, c, d, e, b, i punti di sospensione, e sia x il centro di gravità di tutte le grandezze così disposte. Bisogna mostrare che la parte bx della bilancia, verso le grandezze minori, è doppia dell'altra [parte] xa.
Si divida la bilancia a metà nel punto d, che necessariamente cadrà o in qualcuno dei punti di sospensione, o nel punto di mezzo tra due sospensioni; ora, le altre distanze fra le sospensioni comprese tra a e d siano tutte divise a metà nei punti m e i; le grandezze, poi, vengono tutte divise in parti eguali alla n; il numero delle parti della f sarà allora eguale al numero delle grandezze che pendono dalla bilancia; le parti della g, invece, saranno una di meno, e così per tutte le altre. Le parti della f siano, pertanto, n, o, r, s, t; quelle della g [siano] n, o, r, s; quelle della h [siano] n, o, r; infine, le parti della k siano n e o: tutte le parti [cioè la loro somma] segnate da n saranno eguali alla f; tutte quelle segnate da o, saranno eguali alla g; quelle segnate da r, saranno eguali alla h; quelle segnate da s, lo saranno alla k; infine la grandezza t è eguale alla n. Poiché, dunque, tutte le grandezze segnate da n sono tra di loro eguali, il punto del loro equilibrio sarà in d, che divide a metà la bilancia ab; per la medesima ragione, di tutte le grandezze segnate da o il punto di equilibrio è in i; di quelle segnate da r è in c; e quelle segnate da s, hanno il loro punto di equilibrio in m; infine t è appesa in a. Pertanto, sulla bilancia ab, a distanze eguali d, i, c, m, a, sono appese grandezze che si eccedono egualmente e il cui eccesso è eguale alla minima: ma la massima, che risulta composta di tutte le n, pende da d; la minima, invece, cioè t, pende da a; e tutte le altre sono disposte ordinatamente. V'è, inoltre, un'altra bilancia ab, sulla quale sono disposte nel medesimo ordine altre grandezze, eguali alle predette in numero e in grandezza: perciò le bilance ab e ad verranno divise dai centri [di gravità ] del composto di tutte le grandezze secondo la medesima proporzione. Ma il centro di gravità delle suddette grandezze è x; perciò x divide le bilance ba e ad secondo la medesima proporzione, in modo che, come bx sta a xa così xa stia a xd; perciò bx è doppia di xa, per il lemma posto sopra. Il che è quello che si doveva provare.
Se in un conoide parabolico viene inscritta una figura e se ne circoscrive un'altra, [costituite] da cilindri aventi eguale altezza, e si divide l'asse del detto conoide in modo che la parte verso il vertice sia doppia della parte verso la base; il centro di gravità della figura inscritta sarà più vicino del detto punto di divisione alla base della porzione [ossia del conoide]; il centro di gravità della figura circoscritta, invece, sarà più lontano del medesimo punto dalla base del conoide; e la distanza di ciascuno dei due centri da tale punto sarà eguale alla linea, che sia la sesta parte dell'altezza di uno dei cilindri da cui sono costituite le figure.
[v. figura 84]
Siano, pertanto, un conoide parabolico e figure tali, quali si sono dette: l'una sia inscritta, l'altra circoscritta; l'asse del conoide, il quale sia ae, venga diviso nel punto n in modo che an sia doppia di ne. Bisogna mostrare che il centro di gravità della figura inscritta si trova sulla linea ne, mentre il centro di quella circoscritta si trova sulla an. Le figure così disposte vengano intersecate da un piano [passante] per l'asse, e la sezione della parabola [ossia del conoide parabolico] sia bac: l'intersezione del piano secante con la base del conoide sia la linea bc; le sezioni dei cilindri siano figure rettangolari: come risulta nel disegno. Ora, il primo dei cilindri inscritti, il cui asse è de, rispetto al cilindro, il cui asse è dy, ha la medesima proporzione che il quadrato id al quadrato sy, cioè che da da ad ay; inoltre, il cilindro, il cui asse è dy, sta al cilindro yz, come il quadrato di sy sta al quadrato di rz, cioè come ya sta ad az; e, per la stessa ragione, il cilindro, il cui asse è zy, sta a quello, il cui asse è zu, come za sta ad au. Dunque, i suddetti cilindri stanno tra di loro come le linee da, ay, za, au: ma queste linee sono tra loro egualmente eccedenti e il loro eccesso è eguale alla minima, in modo che az risulta doppia di au, mentre ay ne risulta tripla, e da quadrupla. I suddetti cilindri sono, dunque, grandezze egualmente eccedentisi l'una l'altra, i cui eccessi sono eguali alla minima di esse; inoltre la linea xm è quella, sulla quale esse sono appese a distanze eguali (infatti ciascun cilindro ha il centro di gravità nel mezzo del proprio asse): perciò, per le cose sopra dimostrate, il centro di gravità della grandezza composta da tutte [le grandezze date] dividerà la linea xm in modo che la parte verso x sia doppia dell'altra. Si faccia, dunque, la divisione, e xa sia doppia di am: dunque, a è il centro di gravità della figura inscritta. Si divida la au a metà in e; ex sarà doppia della me: ma xa è doppia della am, perciò ee è tripla della ea. Ma ae è tripla della en: risulta, dunque, che en è maggiore della ea, e perciò a, che è il centro di gravità della figura inscritta, è più vicino di n alla base del conoide. Poiché, come ae sta ad en, così la parte tolta ee sta alla pa...
[Pagina successiva]