[Pagina precedente]...pinta da tutte due le bande, e poter, per essempio, dire: "Le stelle fisse, perché son lontane, ricrescon pochissimo; ma la Luna, assai, perch'è vicina", ed altra volta, quando venisse il bisogno, dire: "Gli oggetti di camera, essendo vicini, crescono assaissimo; ma la Luna, poco, perch'è lontanissima." E questo sia il primo dubbio.
Secondo, già il P. Grassi pose in un sol capo la cagione del ricrescere or più ed or meno gli oggetti veduti col telescopio, e questo fu la minore o la maggior lontananza d'essi oggetti, né pur toccò una sillaba dell'allungare o abbreviare lo strumento; e di questo, dice ora il Sarsi, nessuna cosa esser più vera: tuttavia, quando ei si ristringe al dimostrarlo, non gli basta più la breve e gran lontananza dell'oggetto, ma gli bisogna aggiungervi la maggiore e la minor lunghezza del telescopio, e construire il sillogismo in cotal forma: "La vicinanza dell'oggetto è causa d'allungare il telescopio; ma tal allungamento è causa di ricrescimento maggiore; adunque la vicinanza dell'oggetto è causa di ricrescimento maggiore." Qui mi pare che il Sarsi, in cambio di sollevare il suo Maestro, l'aggravi maggiormente, facendolo equivocare dal
per accidens al
per se; in quel modo ch'errerebbe quegli che volesse metter l'avarizia tra le regole
de sanitate tuenda, e dicesse: "L'avarizia ècausa di viver sobriamente, la sobrietà è causa di sanità , adunque l'avarizia mantien sano": dove l'avarizia è un'occasione, o vero un'assai remota causa
per accidens alla sanità , la quale segue fuor della primaria intenzion dell'avaro, in quanto avaro, il fine del qual è il risparmio solamente. E questo ch'io dico è tanto vero, quanto con altrettanta conseguenza io proverò, l'avarizia esser causa di malattia, perché l'avaro, per risparmiare il suo, va frequentemente a i conviti degli amici e de' parenti, e la frequenza de' conviti causa diverse malattie; adunque l'avarizia è causa d'ammalarsi: da i quali discorsi si scorge finalmente che l'avarizia, come avarizia, non ha che far niente colla sanità , come anco la propinquità dell'oggetto col suo maggior ricrescimento; e la causa per la quale nel rimirar gli oggetti propinqui s'allunga lo strumento, è per rimuover la confusione nella quale esso oggetto ci si dimostra adombrato, la qual si toglie coll'allungamento; ma perché poi all'allungamento ne conséguita un maggior ricrescimento, ma fuor della primaria intenzione, che fu di chiarificare, e non d'ingrandir, l'oggetto, quindi è che la propinquità non si può chiamare altro che un'occasione, o vero una remotissima causa
per accidens,del maggior ricrescimento.
Terzo, se è vero che quella, e non altra, si debba propriamente stimar causa, la qual posta segue sempre l'effetto, e rimossa si rimuove; solo l'allungamento del telescopio si potrà dir causa del maggior ricrescimento: avvenga che, sia pur l'oggetto in qualsivoglia lontananza, ad ogni minimo allungamento ne séguita manifesto ingrandimento; ma all'incontro, tuttavolta che lo strumento si riterrà nella medesima lunghezza, avvicinisi pur quanto si voglia l'oggetto, quando anco dalla lontananza di cento mila passi si riducesse a quella di cinquanta solamente, non però il ricrescimento sopra l'apparenza dell'occhio libero si farà punto maggiore in questo sito che in quello. Ma bene è vero, che avvicinandolo a piccolissime distanze, come di quattro passi, di due, d'uno, d'un mezo, la specie dell'oggetto più e più sempre s'intorbida ed offusca, sì che, per vederlo distinto e chiaro, convien più e più allungar il telescopio, al qual allungamento ne conséguita poi il maggior e maggior ricrescimento: ed avvenga che tal ricrescimento dependa solo dall'allungamento, e non dall'avvicinamento, da quello, e non da questo, si deve regolare; e perché nelle lontananze oltre a mezo miglio non fa di mestieri, per veder gli oggetti chiari e distinti, di muover punto lo strumento, niuna mutazione cade ne' loro ingrandimenti, ma tutti si fanno colla medesima proporzione; sì che se la superficie, verbigrazia, d'una palla, veduta col telescopio, in distanza di mezo miglio ricresce mille volte, mille volte ancora, e niente meno, ricrescerà il disco della Luna, tanto ricrescerà quel di Giove, e finalmente tanto quel d'una stella fissa. Né accade qui che il Sarsi la voglia star a sminuzzolare e rivedere a tutto rigor di geometria, perché, quando ei l'avrà tirata e ridotta in atomi e presosi anco tutti i vantaggi, il guadagno suo non arriverà a quello di colui che con diligenza s'andava informando per qual porta della città s'usciva per andar per la più breve in India; ed in fine gli converrà confessare (come anco in parte pare ch'ei faccia nel fine del periodo letto da V. S. Illustrissima) che trattando con ogni severità il telescopio, si debba tener manco d'un capello più corto nel riguardar le stelle fisse, che nel mirar la Luna. Ma da tutta questa severità che ne risulterà poi in ultimo, che sia di sollevamento al Sarsi? Nulla assolutamente; perché non ne raccorrà altro se non che, ricrescendo, verbigrazia, la Luna mille volte, le stelle fisse ricrescano novecento novantanove; mentre che per difesa sua e del suo Maestro bisognerebbe ch'elle non crescessero né anco due volte, perché il ricrescimento del doppio non è cosa impercettibile, ed eglino dicono le fisse non ricrescer sensibilmente.
Io so che il Sarsi ha intese benissimo queste cose, anco nella lettura del signor Mario; ma vuol, per quanto ei può, mantener vivo il suo Maestro a quint'essenza di sillogismi sottilissimamente distillati (e siami lecito dir così, perché di qui a poco ei chiamerà troppo minute alcune cose del signor Mario, che sono assai più corpulente di queste sue). Ma per finire ormai i miei dubbi, m'accade dir qualche cosa intorno all'essempio portato dal Sarsi, preso da gli oggetti veduti naturalmente: de' quali dice che quanto più s'allontanano dall'occhio, sempre si veggono sotto minor angolo; nientedimeno, quando si è arrivato a certa distanza, nella quale l'angolo si faccia assai piccolo, per molto poi che si allontani più l'oggetto, l'angolo però non si diminuisce sensibilmente; tuttavia, dic'egli, si può dimostrare ch'ei si fa minore. Ma se il senso di questo essempio è quale mi si rappresenta, e qual anco convien che sia se ha da quadrar bene al concetto essemplificato, io son di parere molto diverso da questo del Sarsi. Imperocché a me pare ch'in sostanza ei voglia che l'angolo visuale, nell'allontanarsi l'oggetto, si vada ben continuamente diminuendo, ma sempre successivamente con minor proporzione, sì che oltre a una gran lontananza, per molto che l'oggetto si discosti ancora, poco più si diminuisca l'angolo: ma io son di contrario parere, e dico che la diminuzione dell'angolo si va facendo sempre con maggior proporzion, quanto più l'oggetto s'allontana. E per più facilmente dichiararmi, noto primieramente, che il voler determinar le grandezze apparenti degli oggetti visibili colle quantità degli angoli sotto i quali quelle ci si rappresentano, è ben fatto nel trattar di parti di alcuna circonferenza di cerchio nel centro del quale sia collocato l'occhio; ma trattandosi di tutti gli altri oggetti, è errore: imperocché l'apparenti grandezze, non dagli angoli visuali, ma dalle corde degli archi suttesi a detti angoli si deono determinare; e queste tali apparenti quantità si vanno sempre diminuendo puntualissimamente con proporzion contraria di quella delle lontananze; sì che il diametro, verbigrazia, d'un cerchio, veduto in distanza di cento braccia, mi si rappresenta giusto la metà di quello che m'apparrebbe dalla distanza di braccia cinquanta, e veduto in distanza di mille braccia mi parrà doppio che se sarà lontano dumila, e così sempre in tutte le lontananze; né mai accaderà ch'egli per qualsivoglia grandissima distanza m'apparisca così piccolo, ch'ei non mi paia ancora la metà da dupplicata lontananza. Ma se noi pur vorremo determinar l'apparenti grandezze dalla quantità degli angoli, come fa il Sarsi, il fatto seguirà ancora più disfavorevole per lui; perché tali angoli non diminuiranno già colla proporzione colla quale le lontananze crescono, ma con minore. Ma quel che contraria al detto del Sarsi è che, paragonati gli angoli fra di loro, con maggior proporzione si vanno diminuendo nelle maggiori distanze che nelle minori; sì che, se, verbigrazia, l'angolo d'un oggetto posto in distanza di cinquanta braccia, all'angolo del medesimo oggetto posto in distanza di braccia cento, è, per essempio, come cento a sessanta, l'angolo del medesimo oggetto in distanza di mille all'angolo in distanza di dumila sarà , verbigrazia, come cento a cinquant'otto, e quello in distanza di quattromila a quello in distanza d'ottomila sarà come cento a cinquantacinque, e quel della distanza di 10000 a quel di ventimila sarà come cento a cinquantadue, e sempre la diminuzion dell'angolo s'anderà facendo in maggiore e maggior proporzione, senza però ridursi mai a farsi colla medesima delle lontananze permutatamente prese. Tal che, s'io non prendo errore, quello che scrive il Sarsi, che l'angolo visuale, ridotto per gran lontananze a molta acutezza, non continua di diminuirsi per altri immensi allontanamenti con sì gran proporzione come faceva nelle minori distanze, è tanto falso, quanto che tal diminuzione vien sempre fatta in maggior proporzione.
15. Legga ora V. S. Illustrissima: "Sed dicet is, hoc non esse, saltem, eodem uti instrumento, ac proinde, si de eodem loquamur specillo, falsam esse positionem illam: quamquam enim eadem sint vitra, idem etiam tubus, si tamen hic idem modo productior, modo vero fuerit contractior, non idem semper erit instrumentum. Apage hæc tam minuta. Si quis igitur cum amico colloquens leni sono verba formaverit, ut scilicet e propinquo exaudiatur; mox alium conspicatus e longinquo, contentissima illum voce inclamarit; alio atque alio illum uti gutture atque ore dixeris, quod hæc vocis instrumenta illic contrahi, hic dilatari atque extendi necesse sit? Nos vero cum tubicines æs illud recurvum ac replicatum adducta reductaque dextra ad graviorem quidem sonum producentes, ad acutiorem vero contrahentes, intuemur, num propterea alia atque alia uti tuba existimamus?"
Qui, com'ella vede, il Sarsi introduce me, come ormai convinto dalla forza de' suoi sillogismi, a ricorrere per mio scampo a qualunque debolissimo attacco, ed a dire, quando pur vero sia che le stelle fisse non ricevano accrescimento come gli oggetti vicini, che questo "saltem" non è servirsi del medesimo strumento, poi che negli oggetti propinqui si deve allungare; e mi soggiunge, con un
Apage,ch'io ricorro a cose troppo minute. Ma, signor Sarsi, io non ho bisogno di ricorrere al "saltem" ed alle minuzie. Necessità ne avete avuta voi sin qui, e più l'averete nel progresso. Voi avete avuto bisogno di dire che "saltem" nelle sottilissime idee geometriche le fisse richieggono abbreviazione del telescopio più che la Luna, dal che poi ne seguiva, come di sopra ho notato, che ricrescendo la Luna mille volte, le fisse ricrescerebbono novecento novantanove, mentre che per mantenimento del vostro detto avevate di bisogno ch'elle non ricrescessero né anco una meza volta. Questo, signor Sarsi, è un ridursi al "saltem", e un far come quella serpe che, lacerata e pesta, non le sendo rimasti più spiriti fuor che nell'estremità della coda, quella va pur tuttavia divincolando, per dare a credere a' viandanti d'essere ancor sana e gagliarda. Ed il dire che il telescopio allungato è un altro strumento da quel ch'era avanti, è, nel proposito di che si parla, cosa essenzialissima, e tanto vera quanto verissima; né il Sarsi avrebbe stimato altrimenti, se nel darne giudicio non avesse equivocato dalla materia alla forma o figura, che dir la vogliamo: il che si può facilmente dichiarare anco senza uscir del suo medesimo essempio.
Io domando al Sarsi, onde avvenga che le canne dell'organo non suonan tutte all'unisono, ma altre rendono il tuono più grave ed altre meno?...
[Pagina successiva]