[Pagina precedente]...incipe suo avversario, per la vittoria d'un gran resto promessagli dal cinquantacinque già scoperto e gittato in tavola. Ma il signor Mario, con maniera un poco più severa, ha voluto a carte spiegate dire il suo concetto e mostrar la falsità e nullità di quell'argomento, regolandosi da altro fine, ch'è stato di voler più tosto medicare i difetti e tor via gli errori con qualche passione degl'infermi, che fomentargli e fargli maggiori per non gli disgustare.
A quello che il Sarsi scrive in ultimo, che il suo Maestro non avesse avuto pensiero di offender me nel tassar quelli che si burlavan dell'argomento, non occorre ch'io replichi altro, perché già ho detto che lo credo e che mai non ho creduto in contrario. Ma voglio che il Sarsi creda che né io ancora, nel dimostrar falso l'argomento, non ho avuta intenzion d'offender il suo Maestro, ma ben di giovare a chiunque era in quello errore; né so bene intendere con quale occasione m'abbia in questo luogo a toccare col motto del volere, per non perdere un bel detto, perdere un amico: né so vedere quale arguzia sia nel dir "Questo argumento non è vero" sì che debba esser preso per detto arguto.
14. Or segua V. S. Illustrissima il leggere: "Sed rem ipsam nunc enucleatius discutiamus. Aio, nihil in hoc argumento a veritate alienum reperiri. Nam asserimus, primum, obiecta tubo optico visa, quo propinquiora fuerint, eo augeri magis, minus vero quo remotiora. Nihil verius. Galilæus negat. Quid, si fateatur? Quæro enim ex illo, cum tubum illum suum et quidem optimum in manus acceperit, si forte rem intra cubiculi aut aulæ spatia inclusam intueri voluerit, an non is longissime producendus sit? Ita est, ait. Si vero rem longe dissitam e fenestra eodem instrumento spectare libuerit, contrahendum illico dicet, atque ab immani illa longitudine breviorem redigendum in formam. Quod si productionis huius contractionisque caussam quæsiero, ad naturam utique instrumenti recurrendum erit; cuius ea conditio est, ut ad propinquiora intuenda, ex opticæ principiis, produci, ad remotiora vero spectanda contrahi, postulet. Cum ergo ex productione et contractione tubi, ut ait ipse, necessario oriatur maius minusve obiectorum incrementum, licebit iam mihi ex his argumentum huiusmodi conficere: Quæcumque non aliter quam productiore tubo spectari postulant, necessario augentur magis, et quæcumque non aliter quam contractiore tubo spectari postulant, necessario augentur minus; sed propinqua omnia non aliter quam productiore tubo, longe vero remota non aliter quam contractiore tubo, spectari postulant: ergo propinqua omnia necessario augentur magis, longe vero remota necessario augentur minus. In quo argumento si maior minorque propositio vera comprobetur, nec negabitur, arbitror, quod ex illis necessario consequitur. Primam vero propositionem ipse ultro admittit: altera etiam certissima est; et quidem in iis quæ citra dimidium milliare spectantur, nulla apud illum probatione indiget; quod si ea quæ ulterius deinde excurrunt, eadem spectari solent tubi longitudine, id fit non quia revera magis semper ac magis contrahendus ille non sit, sed quia maior isthæc contractio adeo exiguis includitur terminis, ut non multum intersit si omittatur, ac proinde ut plurimum negligatur. Si tamen rei naturam spectemus atque ex rigore geometrico loquendum sit, semper maior hæc contractio requiretur: eadem plane ratione ac si quis diceret, visibile quodcumque quo magis ab oculo removetur, minori semper ac minori spectari angulo, quæ propositio verissima est; nihilominus, cum res oculo obiecta ad certam pervenerit distantiam, in qua angulum visivum efficiat valde exiguum, quamvis postea multo adhuc intervallo fiat remotior, non minuitur sensibiliter idem angulus; et tamen demonstrari potest, illum semper minorem ac minorem futurum. Ita, quamvis ultra maximam quandam distantiam obiectorum vix varientur anguli incidentiæ specierum ad tubi specilla (perinde enim tunc est, ac si omnes radii perpendiculariter inciderent), et consequenter neque varianda sensibiliter sit instrumenti longitudo, verissima tamen adhuc censenda est ea propositio quæ asserit, naturam specilli eam esse, ut, quo remotiora fuerint obiecta, eo magis ad ea spectanda contrahi postulet, et propterea minus eadem augeat quam propinqua; et si severe, ut aiebam, loquendum sit, affirmo stellas breviori specillo spectandas quam Lunam."
Qui, com'ella vede, si apparecchia il Sarsi con mirabil franchezza a volere in virtù d'acuti sillogismi mantenere, niuna cosa esser più vera della più volte profferita proposizione, cioè che gli oggetti veduti col telescopio tanto ricrescon più quanto son più vicini, e tanto meno quanto son più lontani; ed è tanta la sua confidenza, che quasi si promette ch'io sia per confessarla, ben che di presente io la neghi. Ma io fo un augurio e pronostico molto differente, e credo ch'egli si sia, nel tesser questa tela, per ritrovare in maniera inviluppato, più di quello ch'ei pensa ora che egli è su l'ordirla, che in ultimo da per se stesso sia per confessarsi convinto; convinto, dico, a chi con qualche attenzione considererà le cose nelle quali egli anderà a terminare, che facilmente saranno le medesime
ad unguem che le scritte dal signor Mario, ma orpellate in maniera e così spezzatamente intarsiate tra varii ornamenti e rabeschi di parole, o vero riportate in iscorcio in qualche angolo, che forse alla prima scorsa possano, a chi meno fissamente le consideri, parer qualch'altra cosa da quello che realmente sono in pianta.
In tanto, per non lo tor d'animo, gli soggiungo, che come questo ch'ei tenta sia vero, non solo l'argomento che in questa proposizione s'appoggia, del quale il suo Maestro e gli altri astronomi amici suoi si son serviti per ritrovare il luogo della cometa, è il più ingegnoso e concludente d'ogn'altro, ma di più dico che questo effetto del telescopio avanza in eccellenza di gran lunga tutti gli altri, mediante le gran conseguenze ch'ei si tira dietro; e resto estremamente meravigliato, né so restar capace come possa esser, che, conoscendolo vero, abbia il Sarsi poco fa detto di sé e del suo Maestro d'averne fatto assai minore stima che degli altri due, presi l'uno dal moto circolare e l'altro dalla piccolezza della paralasse, li quali, sia detto con pace loro, non son degni d'esser servidori di questo. Signore, se questa cosa è vera, ecco spianata al Sarsi la strada ad invenzioni ammirande, tentate da moltissimi né mai trovate da alcuno; ecco non solo misurata in una sola stazione qualsivoglia lontananza in Terra, ma senza errore alcuno stabilite le distanze de' corpi celesti. Perché, osservato che sia una volta sola che, verbigrazia, un cerchio lontano un miglio ci si dimostri, veduto col telescopio, di diametro trenta volte maggiore che coll'occhio libero, subito che vedremo l'altezza d'una torre ricrescer, per essempio, diece volte, saremo sicuri quella esser lontana tre miglia; e ricrescendo il diametro della Luna come dir tre volte più di quel che ce lo mostra l'occhio libero, potremo dire, quella esser lontana dieci miglia, ed il Sole quindici, se il suo diametro ricrescerà due volte solamente; o pure, se con qualche telescopio eccellente noi vedessimo la Luna ricrescere in diametro, verbigrazia, dieci volte, la qual è lontana più di cento mila miglia, come bene scrive il P. Grassi, la palla della cupola dalla distanza di un miglio ricrescerà in diametro più d'un milion di volte. Or io, per aiutare quanto posso un'impresa così stupenda, anderò promovendo alcuni dubbietti che mi nascono nel progresso del Sarsi, i quali V. S. Illustrissima, se così le piacerà , potrà con qualche occasione mostrar a lui, acciò, col torgli via, possa tanto più perfettamente stabilire il tutto.
Volendo dunque il Sarsi persuadermi che le stelle fisse non ricevono sensibile accrescimento dal telescopio, comincia dagli oggetti che sono in camera, e mi domanda se per vedergli col telescopio, e' mi bisogna allungarlo assaissimo; ed io gli rispondo che sì: passa a gli oggetti fuori della finestra in gran lontananza, e mi dice che per veder questi bisogna scorciar assai lo strumento; ed io l'affermo, e gli concedo, appresso, ciò derivar, com'esso scrive, dalla natura dello strumento, che per veder gli oggetti vicinissimi richiede assai maggior lunghezza di canna, e minor per li più lontani; ed oltre a ciò confesso che la canna più lunga mostra gli oggetti maggiori che la più breve; e finalmente gli concedo per ora tutto il sillogismo, la cui conclusione è che in universale gli oggetti vicini s'accrescon più, e i molto lontani meno, cioè (adattandola a i nominati particolari) che le stelle fisse, che sono oggetti lontani, ricrescon meno che le cose poste in camera o dentro al palazzo, tra i quali termini mi pare che il Sarsi comprenda le cose ch'ei chiama vicine, non avendo nominatamente discostato in maggior lontananza il termine loro. Ma il detto sin qui non mi par che soddisfaccia a gran lunga al bisogno del Sarsi. Imperocché domando io adesso a lui, s'ei ripone la Luna nella classe degli oggetti vicini, o pure in quella de' lontani. Se la mette tra i lontani, di lei si concluderà il medesimo che delle stelle fisse, cioè il poco ingrandirsi (ch'è poi di diretto contrario all'intenzion del suo Maestro, il quale, per costituir la cometa sopra la Luna, ha bisogno che la Luna sia di quegli oggetti che assai s'ingrandiscono; e però anco scrisse ch'ella in effetto assaissimo ricresceva, e pochissimo la cometa); ma s'egli la mette tra i vicini, che son quelli che ricrescono assai, io gli risponderò ch'ei non doveva da principio ristringere i termini delle cose vicine dentro alle mura della casa, ma doveva ampliargli almeno sino al ciel della Luna. Or sieno ampliati sin là , e torni il Sarsi alle sue prime interrogazioni, e mi dimandi se per veder col telescopio gli oggetti vicini, cioè che non sono oltre all'orbe della Luna, e' mi bisogna allungar assaissimo il telescopio. Io gli risponderò di no; ed ecco spezzato l'arco, e finito il saettar de' sillogismi.
Per tanto, se noi torneremo a considerar meglio questo argomento, lo troveremo esser difettoso, ed esser preso come assoluto quello che non si può intendere senza relazione, o vero come terminato quello ch'è indeterminato, ed in somma essere stata fatta una divisione diminuta (che si chiamano errori in logica), mentre il Sarsi, senza assegnar termine e confine tra la vicinanza e lontananza, ha divisi gli oggetti visibili in lontani ed in vicini, errando in quel medesimo modo ch'errerebbe quel che dicesse: "Le cose del mondo o son grandi o son piccole", nella qual proposizione non è verità né falsità , e così anco non è nel dire: "Gli oggetti o son vicini o son lontani"; dalla quale indeterminazione nasce che le medesime cose si potranno chiamar vicinissime e lontanissime, grandissime e piccolissime, e le più vicine lontane, e le più lontane vicine, e le più grandi piccole, e le più piccole grandi, e si potrà dire: "Questa è una collinetta piccolissima", e "Questo è un grandissimo diamante"; quel corriero chiama brevissimo il viaggio da Roma a Napoli, mentre che quella gentildonna si duole che la chiesa è troppo lontana dalla casa sua. Doveva dunque, s'io non m'inganno, per fuggir questi equivochi, fare il Sarsi la sua divisione almeno in tre membri, dicendo: "Degli oggetti visibili altri son vicini, altri lontani, ed altri posti in mediocre distanza", la qual restava come confine tra i vicini ed i lontani; né anco qui si doveva fermare, ma di più doveva soggiungere una precisa determinazione alla distanza d'esso confine, dicendo, verbigrazia: "Io chiamo distanza mediocre quella d'una lega; grande, quella ch'è più d'una lega; piccola, quella ch'è meno": né so ben capire perch'egli non l'abbia fatto, se non che forse scorgeva più il suo conto e più se lo prometteva dal potere accortamente prestigiare con equivochi tra le persone semplici, che dal saldamente concludere tra i più intelligenti; ed è veramente un gran vantaggio aver la carta di...
[Pagina successiva]